Advertisement

Nano Research

, Volume 11, Issue 3, pp 1470–1481 | Cite as

Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma

  • Jian Gao
  • Lei Zhou
  • Jingshuang Liang
  • Ziming Wang
  • Yue Wu
  • Javid Muhammad
  • Xinglong DongEmail author
  • Shouzhe Li
  • Hongtao Yu
  • Xie QuanEmail author
Research Article

Abstract

Silicon carbides are basilic ceramics with proper bandgaps (2.4–3.3 eV) and unique optical properties. SiC@C monocrystal nanocapsules with different morphologies, sizes, and crystal types were synthesized via the fast and facile direct current (DC) arc discharge plasma method. The influence of Ar atmosphere on the formation of nanocrystal SiC polytypes was investigated by optical emission spectroscopy (OES) diagnoses on the arc discharge plasma. Boltzmann’s plot was used to estimate the temperatures of plasma containing different Ar concentrations as 10,582 K (in 2 × 104 Pa of Ar partial pressure) and 14,523 K (in 4 × 104 Pa of Ar partial pressure). It was found that higher energy state of plasma favors the ionization of carbon atoms and promotes the formation of α-SiC, while β-SiC is generally coexistent. Heat-treatment in air was applied to remove the carbon species in as-prepared SiC nanopowders. Thus, the intrinsic characters of SiC polytypes reappeared in the ultraviolet–visible (UV–vis) light absorbance. It was experimentally revealed that the direct bandgap of SiC is 5.72 eV, the indirect bandgap of β-SiC (3C) is 3.13 eV, and the indirect bandgap of α-SiC (6H) is 3.32 eV; visible quantum confinement effect is predicted for these polytypic SiC nanocrystals.

Keywords

SiC polytype nanostructures direct current (DC) arc discharge plasma optical emission spectroscopy(OES) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (Nos. 51331006 and 51271044).

Supplementary material

12274_2017_1764_MOESM1_ESM.pdf (738 kb)
Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma

References

  1. [1]
    Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60.CrossRefGoogle Scholar
  2. [2]
    Ou, Y.; Zhu, X. L.; Jokubavicius, V.; Yakimova, R.; Mortensen, N. A.; Syväjärvi, M.; Xiao, S. S.; Ou, H. Y. Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures. Sci. Rep. 2014, 4, 4662.CrossRefGoogle Scholar
  3. [3]
    Minella, A. B.; Pohl, D.; Täschner, C.; Erni, R.; Ummethala, R.; Rümmeli, M. H.; Schultz, L.; Rellinghaus, B. Silicon carbide embedded in carbon nanofibres: Structure and band gap determination. Phys. Chem. Chem. Phys. 2014, 16, 24437–24442.CrossRefGoogle Scholar
  4. [4]
    Lin, L. W. Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions. Nanoscale 2011, 3, 1582–1591.CrossRefGoogle Scholar
  5. [5]
    Wang, Y. T.; Liu, Y.; Wendler, E.; Hübner, R.; Anwand, W.; Wang, G.; Chen, X. L.; Tong, W.; Yang, Z. R.; Munnik, F. et al. Defect-induced magnetism in SiC: Interplay between ferromagnetism and paramagnetism. Phys. Rev. B 2015, 92, 174409.CrossRefGoogle Scholar
  6. [6]
    Xie, S.; Guo, X. N.; Jin, G. Q.; Tong, X. L.; Wang, Y. Y.; Guo, X. Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes. Chem. Commun. 2014, 50, 228–230.CrossRefGoogle Scholar
  7. [7]
    Chen, K.; Huang, Z. H.; Huang, J. T.; Fang, M. H.; Liu, Y. G.; Ji, H. P.; Yin, L. Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant. Ceram. Int. 2013, 39, 1957–1962.CrossRefGoogle Scholar
  8. [8]
    Tabata, A.; Imori, Y. Current density–voltage and admittance characteristics of hydrogenated nanocrystalline cubic SiC/ crystalline Si heterojunction diodes prepared with varying H2 gas flow rates. Solid-State Electron. 2015, 104, 33–38.CrossRefGoogle Scholar
  9. [9]
    Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Xie, S.; Fang, D. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res. 2016, 9, 886–898.CrossRefGoogle Scholar
  10. [10]
    Wu, R. B.; Zhou, K.; Yang, Z. H.; Qian, X. K.; Wei, J.; Liu, L.; Huang, Y. Z.; Kong, L. B.; Wang, L. Y. Moltensalt- mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 2013, 15, 570–576.CrossRefGoogle Scholar
  11. [11]
    Wu, R. B.; Zhou, K.; Qian, X. K.; Wei, J.; Tao, Y.; Sow, C. H.; Wang, L. Y.; Huang, Y. Z. Well-aligned SiC nanoneedle arrays for excellent field emitters. Mater. Lett. 2013, 91, 220–223.CrossRefGoogle Scholar
  12. [12]
    Wu, R. B.; Zhou, K.; Wei, J.; Huang, Y. Z.; Su, F.; Chen, J. J.; Wang, L. Y. Growth of tapered SiC nanowires on flexible carbon fabric: toward field emission applications. J. Phys. Chem. C 2012, 116, 12940–12945.CrossRefGoogle Scholar
  13. [13]
    Botsoa, J.; Lysenko, V.; Géloën, A.; Marty, O.; Bluet, J. M.; Guillot, G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 2008, 92, 173902.CrossRefGoogle Scholar
  14. [14]
    Wang, Z. J.; Wei, M. M.; Jin, L.; Ning, Y. X.; Yu, L.; Fu, Q.; Bao, X. H. Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Res. 2013, 6, 399–408.CrossRefGoogle Scholar
  15. [15]
    Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462–472.CrossRefGoogle Scholar
  16. [16]
    Ortiz, A. L.; Sánchez-Bajo, F.; Cumbrera, F. L.; Guiberteau, F. The prolific polytypism of silicon carbide. J. Appl. Cryst. 2013, 46, 242–247.CrossRefGoogle Scholar
  17. [17]
    Zywietz, A.; Karch, K.; Bechstedt, F. Influence of polytypism on thermal properties of silicon carbide. Phys. Rev. B, 1996, 54, 1791–1798.CrossRefGoogle Scholar
  18. [18]
    Krishna, P.; Verma, A. R. Crystal-polymorphism in one dimension. Phys. Status Solidi (B), 1966, 17, 437–477.CrossRefGoogle Scholar
  19. [19]
    Hofmann, M.; Zywietz, A.; Karch, K.; Bechstedt, F. Lattice dynamics of SiC polytypes within the bond-charge model. Phys. Rev. B 1994, 50, 13401–13411.CrossRefGoogle Scholar
  20. [20]
    Maboudian, R.; Carraro, C.; Senesky, D. G.; Roper, C. S. Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A 2013, 31, 050805.CrossRefGoogle Scholar
  21. [21]
    Persson, C.; Lindefelt, U. Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. Phys. Rev. B 1996, 54, 10257–10260.CrossRefGoogle Scholar
  22. [22]
    Okojie, R. S.; Xhang, M.; Pirouz, P.; Tumakha, S.; Jessen, G.; Brillson, L. J. Observation of 4H-SiC to 3C-SiC polytypic transformation during oxidation. Appl. Phys. Lett. 2001, 79, 3056–3058.CrossRefGoogle Scholar
  23. [23]
    Durandurdu, M. Pressure-induced phase transition of SiC. J. Phys.-Condes. Matter 2004, 16, 4411–4417.CrossRefGoogle Scholar
  24. [24]
    Hong, M. H.; Samant, A. V.; Pirouz, P. Stacking fault energy of 6H-SiC and 4H-SiC single crystals. Philos. Mag. A 2009, 80, 919–935.CrossRefGoogle Scholar
  25. [25]
    Sugiyama, S.; Togaya, M. Phase relationship between 3C- and 6H-silicon carbide at high pressure and high temperature. J. Am. Ceram. Soc. 2001, 84, 3013–3016.CrossRefGoogle Scholar
  26. [26]
    Okojie, R. S.; Holzheu, T.; Huang, X. R.; Dudley, M. X-ray diffraction measurement of doping induced lattice mismatch in n-type 4H-SiC epilayers grown on p-type substrates. Appl. Phys. Lett. 2003, 83, 1971–1973.CrossRefGoogle Scholar
  27. [27]
    Guo, X. X.; Dai, D. J.; Fan, B. L.; Fan, J. Y. Experimental evidence of α → β phase transformation in SiC quantum dots and their size-dependent luminescence. Appl. Phys. Lett. 2014, 105, 193110.CrossRefGoogle Scholar
  28. [28]
    Li, P., Xu, L. Q.; Qian, Y. T. Selective synthesis of 3C-SiC hollow nanospheres and nanowires. Cryst. Growth Des. 2008, 8, 2431–2436.CrossRefGoogle Scholar
  29. [29]
    Dasog, M.; Smith, L. F.; Purkait, T. K.; Veinot, J. G. C. Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chem. Commun. 2013, 49, 7004–7006.CrossRefGoogle Scholar
  30. [30]
    Fan, J. Y.; Li, H. X.; Wang, J.; Xiao, M. Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC. Appl. Phys. Lett. 2012, 101, 131906.CrossRefGoogle Scholar
  31. [31]
    Yushin, G. N.; Cambaz, Z. G.; Gogotsi, Y.; Vyshnyakova, K. L.; Pereselentseva, L. N. Carbothermal synthesis of α-SiC micro-ribbons. J. Am. Ceram. Soc. 2007, 91, 83–87.CrossRefGoogle Scholar
  32. [32]
    Bechelany, M.; Brioude, A.; Stadelmann, P.; Ferro, G.; Cornu, D.; Miele, P. Very long SiC-based coaxial nanocables with tunable chemical composition. Adv. Funct. Mater. 2007, 17, 3251–3257.CrossRefGoogle Scholar
  33. [33]
    Dong, X. L.; Zhang, Z. D.; Zhao, X. G.; Chuang, Y. C. The preparation and characterization of ultrafine Fe-Ni particles. J. Mater. Res. 1999, 14, 398–406.CrossRefGoogle Scholar
  34. [34]
    Zhang, X. F.; Guo, J. J.; Guan, P. F.; Liu, C. J.; Huang, H.; Xue, F. H.; Dong, X. L.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924.CrossRefGoogle Scholar
  35. [35]
    Yu, J. Y.; Gao, J.; Xue, F. H.; Yu, X. H.; Yu, H. T.; Dong, X. L.; Huang, H.; Ding, A.; Quan, X.; Cao, G. Z. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge. RSC Adv. 2015, 5, 68714–68721.CrossRefGoogle Scholar
  36. [36]
    Gao, J.; Yu, J. Y.; Zhou, L.; Muhammad, J.; Dong, X. L.; Wang, Y. N.; Yu, H. T.; Quan, X.; Li, S. J.; Jung, Y. Interface evolution in the platelet-like SiC@C and SiC@SiO2 monocrystal nanocapsules. Nano Res. 2017, 10, 2644–2656.CrossRefGoogle Scholar
  37. [37]
    Zhou, X. F.; Li, X.; Gao, Q. Z.; Yuan, J. L.; Wen, J. Q.; Fang, Y. P.; Liu, W.; Zhang, S. S.; Liu, Y. J. Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Catal. Sci. Technol. 2015, 5, 2798–2806.CrossRefGoogle Scholar
  38. [38]
    Kondo, T.; Okada, N.; Yamaguchi, Y.; Urai, J.; Aikawa, T.; Yuasa, M. Boron-doped nanodiamond powder prepared by solid-state diffusion method. Chem. Lett. 2015, 44, 627–629.CrossRefGoogle Scholar
  39. [39]
    Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.CrossRefGoogle Scholar
  40. [40]
    Nichols, J. A.; Saito, H.; Deck, C.; Bandaru, P. R. Artificial introduction of defects into vertically aligned multiwalled carbon nanotube ensembles: Application to electrochemical sensors. J. Appl. Phys. 2007, 102, 064306.CrossRefGoogle Scholar
  41. [41]
    Vallerot, J. M.; Bourrat, X.; Mouchon, A.; Chollon, G. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon 2006, 44, 1833–1844.CrossRefGoogle Scholar
  42. [42]
    Smovzh, D. V.; Kostogrud, I. A.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A. The synthesis of few-layered graphene by the arc discharge sputtering of a Si-C electrode. Carbon 2017, 112, 97–102.CrossRefGoogle Scholar
  43. [43]
    Ke, W. W.; Feng, X.; Huang, Y. D. The effect of Si-nanocrystal size distribution on Raman spectrum. J. Appl. Phys. 2011, 109, 083526.CrossRefGoogle Scholar
  44. [44]
    Bechelany, M.; Brioude, A.; Cornu, D.; Ferro, G.; Miele, P. A Raman spectroscopy study of individual SiC nanowires. Adv. Funct. Mater. 2007, 17, 939–943.CrossRefGoogle Scholar
  45. [45]
    Rehman, N. U.; Khan, F. U.; Khattak, N. A. D.; Zakaullah, M. Effect of neon mixing on vibrational temperature of molecular nitrogen plasma generated at 13.56 MHz. Phys. Lett. A 2008, 372, 1462–1468.CrossRefGoogle Scholar
  46. [46]
    Cao, T. F.; Zhang, H. B.; Yan, B. H.; Lu, W.; Cheng, Y. Optical emission spectroscopy diagnostic and thermodynamic analysis of thermal plasma enhanced nanocrystalline silicon CVD process. RSC Adv. 2014, 4, 15131–15137.CrossRefGoogle Scholar
  47. [47]
    Iordanova, S.; Koleva, I. Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 344–356.CrossRefGoogle Scholar
  48. [48]
    Sugimoto, I.; Nakano, S.; Kuwano, H. Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects. J. Appl. Phys. 1994, 75, 7710–7717.CrossRefGoogle Scholar
  49. [49]
    Naveed, M. A.; Qayyum, A.; Ali, S.; Zakaullah, M. Effects of helium gas mixing on the production of active species in nitrogen plasma. Phys. Lett. A 2006, 359, 499–503.CrossRefGoogle Scholar
  50. [50]
    Aragón, C.; Aguilera, J. A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectroc. Acta Pt. B-Atom. Spectr. 2008, 63, 893–916.CrossRefGoogle Scholar
  51. [51]
    Qayyum, A.; Zeb, S.; Naveed, M. A.; Rehman, N. U.; Ghauri, S. A.; Zakaullah, M. Optical emission spectroscopy of Ar–N2 mixture plasma. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 361–371.CrossRefGoogle Scholar
  52. [52]
    Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectroc. Acta Pt. B-Atom. Spectr. 2006, 61, 2–30.CrossRefGoogle Scholar
  53. [53]
    Logothetidis, S. Optical and electronic properties of amorphous carbon materials. Diam. Relat. Mat. 2003, 12, 141–150.CrossRefGoogle Scholar
  54. [54]
    Dovbeshko, G. I.; Romanyuk, V. R.; Pidgirnyi, D. V.; Cherepanov, V. V.; Andreev, E. O.; Levin, V. M.; Kuzhir, P. P.; Kaplas, T.; Svirko, Y. P. Optical properties of pyrolytic carbon films versus graphite and graphene. Nanoscale Res. Lett. 2015, 10, 234.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Jian Gao
    • 1
  • Lei Zhou
    • 1
  • Jingshuang Liang
    • 1
  • Ziming Wang
    • 1
  • Yue Wu
    • 2
  • Javid Muhammad
    • 1
  • Xinglong Dong
    • 1
    Email author
  • Shouzhe Li
    • 2
  • Hongtao Yu
    • 3
  • Xie Quan
    • 3
    Email author
  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.School of PhysicsDalian University of TechnologyDalianChina
  3. 3.Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations