Skip to main content
Log in

Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Diabetes is a serious public health problem affecting 422 million people worldwide. Traditional diabetes management often requires multiple daily insulin injections, associated with pain and inadequate glycemia control. Herein, we have developed an ultrasound-triggered insulin delivery system capable of pulsatile insulin release that can provide both long-term sustained and fast on-demand responses. In this system, insulin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocapsules are encapsulated within chitosan microgels. The encapsulated insulin in nanocapsules can passively diffuse from the nanoparticle but remain restricted within the microgel. Upon ultrasound treatment, the stored insulin in microgels can be rapidly released to regulate blood glucose levels. In a chemically-induced type 1 diabetic mouse model, we demonstrated that this system, when activated by 30 s ultrasound administration, could effectively achieve glycemic control for up to one week in a noninvasive, localized, and pulsatile manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whiting, D. R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321.

    Article  Google Scholar 

  2. W. H. O. (WHO). Global Report on Diabetes [Online]. http://apps.who.int/iris/bitstream/10665/204871/1/9789241 565257_eng.pdf?ua=1 (accessed Dec 10, 2016).

  3. Herman, W. H. The economic costs of diabetes: Is it time for a new treatment paradigm? Diabetes Care 2013, 36, 775–776.

    Article  Google Scholar 

  4. Mead, V. P. A new model for understanding the role of environmental factors in the origins of chronic illness: A case study of type 1 diabetes mellitus. Med. Hypotheses 2004, 63, 1035–1046.

    Article  Google Scholar 

  5. Wood, J. R.; Miller, K. M.; Maahs, D. M.; Beck, R. W.; DiMeglio, L. A.; Libman, I. M.; Quinn, M.; Tamborlane, W. V.; Woerner, S. E. Most youth with type 1 diabetes in the T1D exchange clinic registry do not meet American diabetes association or international society for pediatric and adolescent diabetes clinical guidelines. Diabetes Care 2013, 36, 2035–2037.

    Article  Google Scholar 

  6. Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57.

    Article  Google Scholar 

  7. Ohkubo, Y.; Kishikawa, H.; Araki, E.; Miyata, T.; Isami, S.; Motoyoshi, S.; Kojima, Y.; Furuyoshi, N.; Shichiri, M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with noninsulin- dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pract. 1995, 28, 103–117.

    Article  Google Scholar 

  8. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986.

  9. Barnett, A. H. The future of inhaled insulin and incretinmimetics in the management of diabetes. Prim. Care Diabetes 2008, 2, 59–61.

    Article  Google Scholar 

  10. Arbit, E.; Kidron, M. Oral insulin: The rationale for this approach and current developments. J. Diabetes Sci. Technol. 2009, 3, 562–567.

    Article  Google Scholar 

  11. Mitragotri, S.; Blankschtein, D.; Langer, R. Ultrasoundmediated transdermal protein delivery. Science 1995, 269, 850–853.

    Article  Google Scholar 

  12. Gu, Z.; Aimetti, A. A.; Wang, Q.; Dang, T. T.; Zhang, Y. L.; Veiseh, O.; Cheng, H.; Langer, R. S.; Anderson, D. G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 2013, 7, 4194–4201.

    Article  Google Scholar 

  13. Fischel-Ghodsian, F.; Brown, L.; Mathiowitz, E.; Brandenburg, D.; Langer, R. Enzymatically controlled drug delivery. Proc. Natl. Acad. Sci. USA 1988, 85, 2403–2406.

    Article  Google Scholar 

  14. Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 2013, 7, 6758–6766.

    Article  Google Scholar 

  15. Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedlearray patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 2015, 112, 8260–8265.

    Article  Google Scholar 

  16. Kataoka, K.; Miyazaki, H.; Bunya, M.; Okano, T.; Sakurai, Y. Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 1998, 120, 12694–12695.

    Article  Google Scholar 

  17. Chou, D. H.-C.; Webber, M. J.; Tang, B. C.; Lin, A. B.; Thapa, L. S.; Deng, D.; Truong, J. V.; Cortinas, A. B.; Langer, R.; Anderson, D. G. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA 2015, 112, 2401–2406.

    Article  Google Scholar 

  18. Makino, K.; Mack, E. J.; Okano, T.; Kim, S. W. A microcapsule self-regulating delivery system for insulin. J. Control. Release 1990, 12, 235–239.

    Article  Google Scholar 

  19. Podual, K.; Doyle, F. J.; Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly (ethylene glycol) grafts. J. Control. Release 2000, 67, 9–17.

    Article  Google Scholar 

  20. Ng, K. Y.; Liu, Y. Therapeutic ultrasound: Its application in drug delivery. Med. Res. Rev. 2002, 22, 204–223.

    Article  Google Scholar 

  21. Zhang, Y. Q.; Yu, J. C.; Bomba, H. N.; Zhu, Y.; Gu, Z. Mechanical force-triggered drug delivery. Chem. Rev. 2016, 116, 12536–12563.

    Article  Google Scholar 

  22. Frinking, P. J. A.; Bouakaz, A.; de Jong, N.; Ten Cate, F. J.; Keating, S. Effect of ultrasound on the release of microencapsulated drugs. Ultrasonics 1998, 36, 709–712.

    Article  Google Scholar 

  23. Ferrara, K. W. Driving delivery vehicles with ultrasound. Adv. Drug Deliv. Rev. 2008, 60, 1097–1102.

    Article  Google Scholar 

  24. Timko, B. P.; Dvir, T.; Kohane, D. S. Remotely triggerable drug delivery systems. Adv. Mater. 2010, 22, 4925–4943.

    Article  Google Scholar 

  25. Di, J.; Price, J.; Gu, X.; Jiang, X. N.; Jing, Y.; Gu, Z. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv. Healthc. Mater. 2014, 3, 811–816.

    Article  Google Scholar 

  26. Ferrara, K.; Pollard, R.; Borden, M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447.

    Article  Google Scholar 

  27. Pavlin, C. J.; Harasiewicz, K.; Sherar, M. D.; Foster, F. S. Clinical use of ultrasound biomicroscopy. Ophthalmology 1991, 98, 287–295.

    Article  Google Scholar 

  28. Choi, W. I.; Lee, J. H.; Kim, J.-Y.; Kim, J.-C.; Kim, Y. H.; Tae, G. Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J. Control. Release 2012, 157, 272–278.

    Article  Google Scholar 

  29. Tinkov, S.; Bekeredjian, R.; Winter, G.; Coester, C. Microbubbles as ultrasound triggered drug carriers. J. Pharm. Sci. 2009, 98, 1935–1961.

    Article  Google Scholar 

  30. Schroeder, A.; Avnir, Y.; Weisman, S.; Najajreh, Y.; Gabizon, A.; Talmon, Y.; Kost, J.; Barenholz, Y. Controlling liposomal drug release with low frequency ultrasound: Mechanism and feasibility. Langmuir 2007, 23, 4019–4025.

    Article  Google Scholar 

  31. Epstein-Barash, H.; Orbey, G.; Polat, B. E.; Ewoldt, R. H.; Feshitan, J.; Langer, R.; Borden, M. A.; Kohane, D. S. A microcomposite hydrogel for repeated on-demand ultrasoundtriggered drug delivery. Biomaterials 2010, 31, 5208–5217.

    Article  Google Scholar 

  32. Tao, S. L.; Desai, T. A. Microfabricated drug delivery systems: From particles to pores. Adv. Drug Deliv. Rev. 2003, 55, 315–328.

    Article  Google Scholar 

  33. Di, J.; Yao, S. S.; Ye, Y. Q.; Cui, Z.; Yu, J. C.; Ghosh, T. K.; Zhu, Y.; Gu, Z. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 2015, 9, 9407–9415.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Junior Faculty Award of the American Diabetes Association (ADA), the NC State Faculty Research and Professional Development Award to Z. G. The authors thank Dr. John Buse at UNC-CH for helpful discussion and Dr. Elizabeth Loboa, Dr. Michael Gamcsik and Dr. Glenn Walker for assistance in equipment usage.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Jing or Zhen Gu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2017_1500_MOESM1_ESM.pdf

Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, J., Yu, J., Wang, Q. et al. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 10, 1393–1402 (2017). https://doi.org/10.1007/s12274-017-1500-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1500-z

Keywords

Navigation