Advertisement

Nano Research

, Volume 10, Issue 6, pp 1950–1958 | Cite as

Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries

  • Xinghua Chang
  • Teng Wang
  • Zhiliang Liu
  • Xinyao Zheng
  • Jie ZhengEmail author
  • Xingguo LiEmail author
Research Article

Abstract

We report a simple method of preparing a high performance, Sn-based anode material for lithium ion batteries (LIBs). Adding H2O2 to an aqueous solution containing Sn2+ and aniline results in simultaneous polymerization of aniline and oxidation of Sn2+ to SnO2, leading to a homogeneous composite of polyaniline and SnO2. Hydrogen thermal reduction of the above composite yields N-doped carbon with hierarchical porosity and homogeneously distributed, ultrafine Sn particles. The nanocomposite exhibits excellent performance as an anode material for lithium ion batteries, showing a high reversible specific capacity of 788 mAh·g−1 at a current density of 100 mA·g−1 after 300 cycles and very good stability up to 5,000 mA·g−1. The simple preparation method combined with the good electrochemical performance is highly promising to promote the application of Sn based anode materials.

Keywords

Sn polyaniline nanocomposite lithium ion battery (LIB) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. U1201241, 11375020, 51431001, and 21321001).

Supplementary material

12274_2016_1381_MOESM1_ESM.pdf (2 mb)
Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries

References

  1. [1]
    Crabtree, G. Perspective: The energy-storage revolution. Nature 2015, 526, S92.CrossRefGoogle Scholar
  2. [2]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  3. [3]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  4. [4]
    Ghadbeigi, L.; Harada, J. K.; Lettiere, B. R.; Sparks, T. D. Performance and resource considerations of Li-ion battery electrode materials. Energy Environ. Sci. 2015, 8, 1640–1650.CrossRefGoogle Scholar
  5. [5]
    Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.CrossRefGoogle Scholar
  6. [6]
    Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590–593.CrossRefGoogle Scholar
  7. [7]
    Kaskhedikar, N. A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664–2680.CrossRefGoogle Scholar
  8. [8]
    Liu, J.; Song, K. P.; Zhu, C. B.; Chen, C. C.; van Aken, P. A.; Maier, J.; Yu, Y. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. ACS Nano 2014, 8, 7051–7059.CrossRefGoogle Scholar
  9. [9]
    Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.CrossRefGoogle Scholar
  10. [10]
    Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6, 7872.CrossRefGoogle Scholar
  11. [11]
    Mangolini, L.; Kortshagen, U. Plasma-assisted synthesis of silicon nanocrystal inks. Adv. Mater. 2007, 19, 2513–2519.CrossRefGoogle Scholar
  12. [12]
    Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.; Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 2008, 7, 916–921.CrossRefGoogle Scholar
  13. [13]
    Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.CrossRefGoogle Scholar
  14. [14]
    Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.CrossRefGoogle Scholar
  15. [15]
    Zhang, Y. J.; Jiang, L.; Wang, C. R. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries. Nanoscale 2015, 7, 11940–11944.CrossRefGoogle Scholar
  16. [16]
    Wang, J. W.; Fan, F. F.; Liu, Y.; Jungjohann, K. L.; Lee, S. W.; Mao, S. X.; Liu, X. H.; Zhu, T. Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling. J. Electrochem. Soc. 2014, 161, F3019–F3024.CrossRefGoogle Scholar
  17. [17]
    Liu, Y. C.; Zhang, N.; Jiao, L. F.; Chen, J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 2015, 27, 6702–6707.CrossRefGoogle Scholar
  18. [18]
    Luo, B.; Qiu, T. F.; Ye, D. L.; Wang, L. Z.; Zhi, L. J. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232–240.CrossRefGoogle Scholar
  19. [19]
    Luo, B.; Qiu, T. F.; Hao, L.; Wang, B.; Jin, M. H.; Li, X. L.; Zhi, L. J. Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. J. Mater. Chem. A 2016, 4, 362–367.CrossRefGoogle Scholar
  20. [20]
    Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk-shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673–4681.CrossRefGoogle Scholar
  21. [21]
    Li, W.; Yang, R.; Zheng, J.; Li, X. G. Tandem plasma reactions for Sn/C composites with tunable structure and high reversible lithium storage capacity. Nano Energy 2013, 2, 1314–1321.CrossRefGoogle Scholar
  22. [22]
    Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153–157.CrossRefGoogle Scholar
  23. [23]
    Li, L. M.; Liu, E. H.; Li, J.; Yang, Y. J.; Shen, H. J.; Huang, Z. Z.; Xiang, X. X.; Li, W. A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 2010, 195, 1516–1521.CrossRefGoogle Scholar
  24. [24]
    Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474.CrossRefGoogle Scholar
  25. [25]
    Hu, P. F.; Wang, H.; Yang, Y.; Yang, J.; Lin, J.; Guo, L. Renewable-biomolecule-based full lithium-ion batteries. Adv. Mater. 2016, 28, 3486–3492.CrossRefGoogle Scholar
  26. [26]
    Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRefGoogle Scholar
  27. [27]
    Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.CrossRefGoogle Scholar
  28. [28]
    Pels, J. R.; Kapteign, F.; Moulign, J. A.; Zhu, Q.; Tomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.CrossRefGoogle Scholar
  29. [29]
    Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724.CrossRefGoogle Scholar
  30. [30]
    Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.CrossRefGoogle Scholar
  31. [31]
    Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013–4023.CrossRefGoogle Scholar
  32. [32]
    Wu, G.; Dai, C. S.; Wang, D. L.; Li, D. Y.; Li, N. Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. J. Mater. Chem. A 2010, 20, 3059–3068.CrossRefGoogle Scholar
  33. [33]
    Bulusheva, L. G.; Okotrub, A. V.; Kinloch, I. A.; Asanov, I. P.; Kurenya, A. G.; Kudashov, A. G.; Chen, X.; Song, H. Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes. Phys. Status Solidi B 2008, 245, 1971–1974.CrossRefGoogle Scholar
  34. [34]
    Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J. M. D. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532.CrossRefGoogle Scholar
  35. [35]
    Sharifi, T.; Nitze, F.; Barzegar, H. R.; Tai, C.-W.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Wågberg, T. Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 2012, 50, 3535–3541.CrossRefGoogle Scholar
  36. [36]
    Sjöström, H.; Stafström, S.; Boman, M.; Sundgren, J. E. Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys. Rev. Lett. 1995, 75, 1336–1339.CrossRefGoogle Scholar
  37. [37]
    Maldonado, S.; Morin, S.; Stevenson, K. J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 2006, 44, 1429–1437.CrossRefGoogle Scholar
  38. [38]
    Liu, X. H.; Zhang, J.; Guo, S. J.; Pinna, N. Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. J. Mater. Chem. A 2016, 4, 1423–1431.CrossRefGoogle Scholar
  39. [39]
    Xiang, X. X.; Liu, E. H.; Huang, Z. Z.; Shen, H. J.; Tian, Y. Y.; Xiao, C. Y.; Yang, J. J.; Mao, Z. H. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery. Mater. Res. Bull. 2011, 46, 1266–1271.CrossRefGoogle Scholar
  40. [40]
    Stejskal, J.; Trchová, M.; Hromádková, J. I.; Kovárová, J.; Kalendová, A. The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polym. Int. 2010, 59, 875–878.CrossRefGoogle Scholar
  41. [41]
    Yuan, D. S.; Zhou, T. X.; Zhou, S. L.; Zou, W. J.; Mo, S. S.; Xia, N. N. Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem. Commun. 2011, 13, 242–246.CrossRefGoogle Scholar
  42. [42]
    Li, L. M.; Liu, E. H.; Yang, Y. J.; Shen, H. J.; Huang, Z. Z.; Xiang, X. X. Nitrogen-containing carbons prepared from polyaniline as anode materials for lithium secondary batteries. Mater. Lett. 2010, 64, 2115–2117.CrossRefGoogle Scholar
  43. [43]
    Youn, D. H.; Heller, A.; Mullins, C. B. Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 2016, 28, 1343–1347.CrossRefGoogle Scholar
  44. [44]
    Qin, J.; He, C. N.; Zhao, N. Q.; Wang, Z. Y.; Shi, C. S.; Liu, E. Z.; Li, J. J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 2014, 8, 1728–1738.CrossRefGoogle Scholar
  45. [45]
    Zhang, G. H.; Zhu, J.; Zeng, W.; Hou, S. C.; Gong, F. L.; Li, F.; Li, C. C.; Duan, H. G. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 2014, 9, 61–70.CrossRefGoogle Scholar
  46. [46]
    Zhang, N.; Zhao, Q.; Han, X. P.; Yang, J. G.; Chen, J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale 2014, 6, 2827–2832.CrossRefGoogle Scholar
  47. [47]
    Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175.CrossRefGoogle Scholar
  48. [48]
    Sun, J. H.; Xiao, L. H.; Jiang, S. D.; Li, G. X.; Huang, Y.; Geng, J. X. Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 2015, 27, 4594–4603.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina

Personalised recommendations