Skip to main content
Log in

Monodisperse hollow silica spheres: An in-depth scattering analysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein, we fabricate hollow silica nanoparticles with exceptionally narrow size distributions that inherently possess two distinct length scales—tens of nanometers with regards to the shell thickness, and hundreds of nanometers in regards to the total diameter. We characterize these structures using dynamic and static light scattering (DLS and SLS), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), and we demonstrate quantitative agreement among all methods. The ratio between the radius of gyration (SLS) and hydrodynamic radius (DLS) in these particles equals almost unity, corresponding to ideal capsule behavior. We are able to resolve up to 20 diffraction orders of the hollow sphere form factor in SAXS, indicating a narrow size distribution. Data from light and X-ray scattering can be combined to a master curve covering a q-range of four orders of magnitude assessing all hierarchical length scales of the form factor. The measured SLS intensity profiles noticeably change when the scattering contrast between the interior and exterior is altered, whereas the SAXS intensity profiles do not show any significant change. Tight control of the aforementioned length scales in one simple and robust colloidal building block renders these particles suitable as future calibration standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, H.; Sofranko, A. C.; Dionysiou, D. D. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction. Adv. Funct. Mater. 2006, 16, 1067–1074.

    Article  Google Scholar 

  2. Rhee do, K.; Jung, B.; Kim, Y. H.; Yeo, S. J.; Choi, S. J.; Rauf, A.; Han, S.; Yi, G. R.; Lee, D.; Yoo, P. J. Particlenested inverse opal structures as hierarchically structured large-scale membranes with tunable separation properties. ACS Appl. Mater. Interfaces 2014, 6, 9950–9954.

    Article  Google Scholar 

  3. Su, B.-L.; Sanchez, C.; Yang, X.-Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011.

    Book  Google Scholar 

  4. Cho, C.-Y.; Moon, J. H. Hierarchical twin-scale inverse opal TiO2 electrodes for dye-sensitized solar cells. Langmuir 2012, 28, 9372–9377.

    Article  Google Scholar 

  5. Wang, D. Y.; Möhwald, H. Template-directed colloidal selfassembly–the route to 'top-down' nanochemical engineering. J. Mater. Chem. 2004, 14, 459–468.

    Article  Google Scholar 

  6. von Freymann, G.; Kitaev, V.; Lotsch, B. V.; Ozin, G. A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554.

    Article  Google Scholar 

  7. Vogel, N.; Retsch, M.; Fustin, C. A.; Del Campo, A.; Jonas, U. Advances in colloidal assembly: The design of structure and hierarchy in two and three dimensions. Chem. Rev. 2015, 115, 6265–6311.

    Article  Google Scholar 

  8. Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. E. Guided hierarchical coassembly of soft patchy nanoparticles. Nature 2013, 503, 247–251.

    Google Scholar 

  9. Cosgrove, T. Colloid Science: Principles, Methods and Applications, 2nd ed.; Wiley-Blackwell: Oxford, 2010.

    Google Scholar 

  10. Chen, Z. H.; Kim, C.; Zeng, X. B.; Hwang, S. H.; Jang, J.; Ungar, G. Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared. Langmuir 2012, 28, 15350–15361.

    Article  Google Scholar 

  11. Blanton, T. N.; Huang, T. C.; Toraya, H.; Hubbard, C. R.; Robie, S. B.; Louër, D.; Göbel, H. E.; Will, G.; Gilles, R.; Raftery, T. JCPDS—International Centre for Diffraction Data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard. Powder Diffr. 1995, 10, 91–95.

    Article  Google Scholar 

  12. Huang, T. C.; Toraya, H.; Blanton, T. N.; Wu, Y. X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Crystallogr. 1993, 26, 180–184.

    Article  Google Scholar 

  13. Nyam-Osor, M.; Soloviov, D. V.; Yu, S. K.; Zhigunov, A.; Rogachev, A. V.; Ivankov, O. I.; Erhan, R. V.; Kuklin, A. I. Silver behenate and silver stearate powders for calibration of SAS instruments. J. Phys.: Conf. Ser. 2012, 351, 012024.

    Google Scholar 

  14. Orgel, J. P. R. O.; Irving, T. C.; Miller, A.; Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001–9005.

    Article  Google Scholar 

  15. Orgel, J. P. R. O.; Miller, A.; Irving, T. C.; Fischetti, R. F.; Hammersley, A. P.; Wess, T. J. The in situ supermolecular structure of type I collagen. Structure 2001, 9, 1061–1069.

    Article  Google Scholar 

  16. Patel, I. S.; Schmidt, P. W. Small-angle X-ray scattering determination of the electron density of the particles in a colloidal suspension. J. Appl. Crystallogr. 1971, 4, 50–55.

    Article  Google Scholar 

  17. Russell, T. P. An absolute intensity standard for small-angle X-ray scattering measured with position-sensitive detectors. J. Appl. Crystallogr. 1983, 16, 473–478.

    Article  Google Scholar 

  18. Perret, R.; Ruland, W. Glassy carbon as standard for the normalization of small-angle scattering intensities. J. Appl. Crystallogr. 1972, 5, 116–119.

    Article  Google Scholar 

  19. Russell, T. P.; Lin, J. S.; Spooner, S.; Wignall, G. D. Intercalibration of small-angle X-ray and neutron scattering data. J. Appl. Crystallogr. 1988, 21, 629–638.

    Article  Google Scholar 

  20. Dreiss, C. A.; Jack, K. S.; Parker, A. P. On the absolute calibration of bench-top small-angle X-ray scattering instruments: A comparison of different standard methods. J. Appl. Crystallogr. 2006, 39, 32–38.

    Article  Google Scholar 

  21. Chen, M.; Ye, C. Y.; Zhou, S. X.; Wu, L. M. Recent advances in applications and performance of inorganic hollow spheres in devices. Adv. Mater. 2013, 25, 5343–5351.

    Article  Google Scholar 

  22. Kohlbrecher, J. SASfit: A Program for Fitting Simple Structural Models to Small Angle Scattering Data. Paul Scherrer Institute, Laboratory for Neutron Scattering: Villigen, Switzerland, 2014.

    Google Scholar 

  23. Ruckdeschel, P.; Kemnitzer, T. W.; Nutz, F. A.; Senker, J.; Retsch, M. Hollow silica sphere colloidal crystals: Insights into calcination dependent thermal transport. Nanoscale 2015, 7, 10059–10070.

    Article  Google Scholar 

  24. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  25. Förster, S.; Apostol, L.; Bras, W. Scatter: Software for the analysis of nano- and mesoscale small-angle scattering. J. Appl. Crystallogr. 2010, 43, 639–646.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Retsch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruckdeschel, P., Dulle, M., Honold, T. et al. Monodisperse hollow silica spheres: An in-depth scattering analysis. Nano Res. 9, 1366–1376 (2016). https://doi.org/10.1007/s12274-016-1032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1032-y

Keywords

Navigation