Advertisement

Nano Research

, Volume 9, Issue 5, pp 1366–1376 | Cite as

Monodisperse hollow silica spheres: An in-depth scattering analysis

  • Pia Ruckdeschel
  • Martin Dulle
  • Tobias Honold
  • Stephan Förster
  • Matthias Karg
  • Markus Retsch
Research Article

Abstract

Herein, we fabricate hollow silica nanoparticles with exceptionally narrow size distributions that inherently possess two distinct length scales—tens of nanometers with regards to the shell thickness, and hundreds of nanometers in regards to the total diameter. We characterize these structures using dynamic and static light scattering (DLS and SLS), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), and we demonstrate quantitative agreement among all methods. The ratio between the radius of gyration (SLS) and hydrodynamic radius (DLS) in these particles equals almost unity, corresponding to ideal capsule behavior. We are able to resolve up to 20 diffraction orders of the hollow sphere form factor in SAXS, indicating a narrow size distribution. Data from light and X-ray scattering can be combined to a master curve covering a q-range of four orders of magnitude assessing all hierarchical length scales of the form factor. The measured SLS intensity profiles noticeably change when the scattering contrast between the interior and exterior is altered, whereas the SAXS intensity profiles do not show any significant change. Tight control of the aforementioned length scales in one simple and robust colloidal building block renders these particles suitable as future calibration standards.

Keywords

hollow sphere silica nanoparticle small angle X-ray scattering light scattering nanoscale characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1032_MOESM1_ESM.pdf (3.3 mb)
Supplementary material, approximately 3.27 MB.

References

  1. [1]
    Choi, H.; Sofranko, A. C.; Dionysiou, D. D. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction. Adv. Funct. Mater. 2006, 16, 1067–1074.CrossRefGoogle Scholar
  2. [2]
    Rhee do, K.; Jung, B.; Kim, Y. H.; Yeo, S. J.; Choi, S. J.; Rauf, A.; Han, S.; Yi, G. R.; Lee, D.; Yoo, P. J. Particlenested inverse opal structures as hierarchically structured large-scale membranes with tunable separation properties. ACS Appl. Mater. Interfaces 2014, 6, 9950–9954.CrossRefGoogle Scholar
  3. [3]
    Su, B.-L.; Sanchez, C.; Yang, X.-Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011.CrossRefGoogle Scholar
  4. [4]
    Cho, C.-Y.; Moon, J. H. Hierarchical twin-scale inverse opal TiO2 electrodes for dye-sensitized solar cells. Langmuir 2012, 28, 9372–9377.CrossRefGoogle Scholar
  5. [5]
    Wang, D. Y.; Möhwald, H. Template-directed colloidal selfassembly–the route to 'top-down' nanochemical engineering. J. Mater. Chem. 2004, 14, 459–468.CrossRefGoogle Scholar
  6. [6]
    von Freymann, G.; Kitaev, V.; Lotsch, B. V.; Ozin, G. A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554.CrossRefGoogle Scholar
  7. [7]
    Vogel, N.; Retsch, M.; Fustin, C. A.; Del Campo, A.; Jonas, U. Advances in colloidal assembly: The design of structure and hierarchy in two and three dimensions. Chem. Rev. 2015, 115, 6265–6311.CrossRefGoogle Scholar
  8. [8]
    Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. E. Guided hierarchical coassembly of soft patchy nanoparticles. Nature 2013, 503, 247–251.Google Scholar
  9. [9]
    Cosgrove, T. Colloid Science: Principles, Methods and Applications, 2nd ed.; Wiley-Blackwell: Oxford, 2010.Google Scholar
  10. [10]
    Chen, Z. H.; Kim, C.; Zeng, X. B.; Hwang, S. H.; Jang, J.; Ungar, G. Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared. Langmuir 2012, 28, 15350–15361.CrossRefGoogle Scholar
  11. [11]
    Blanton, T. N.; Huang, T. C.; Toraya, H.; Hubbard, C. R.; Robie, S. B.; Louër, D.; Göbel, H. E.; Will, G.; Gilles, R.; Raftery, T. JCPDS—International Centre for Diffraction Data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard. Powder Diffr. 1995, 10, 91–95.CrossRefGoogle Scholar
  12. [12]
    Huang, T. C.; Toraya, H.; Blanton, T. N.; Wu, Y. X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Crystallogr. 1993, 26, 180–184.CrossRefGoogle Scholar
  13. [13]
    Nyam-Osor, M.; Soloviov, D. V.; Yu, S. K.; Zhigunov, A.; Rogachev, A. V.; Ivankov, O. I.; Erhan, R. V.; Kuklin, A. I. Silver behenate and silver stearate powders for calibration of SAS instruments. J. Phys.: Conf. Ser. 2012, 351, 012024.Google Scholar
  14. [14]
    Orgel, J. P. R. O.; Irving, T. C.; Miller, A.; Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001–9005.CrossRefGoogle Scholar
  15. [15]
    Orgel, J. P. R. O.; Miller, A.; Irving, T. C.; Fischetti, R. F.; Hammersley, A. P.; Wess, T. J. The in situ supermolecular structure of type I collagen. Structure 2001, 9, 1061–1069.CrossRefGoogle Scholar
  16. [16]
    Patel, I. S.; Schmidt, P. W. Small-angle X-ray scattering determination of the electron density of the particles in a colloidal suspension. J. Appl. Crystallogr. 1971, 4, 50–55.CrossRefGoogle Scholar
  17. [17]
    Russell, T. P. An absolute intensity standard for small-angle X-ray scattering measured with position-sensitive detectors. J. Appl. Crystallogr. 1983, 16, 473–478.CrossRefGoogle Scholar
  18. [18]
    Perret, R.; Ruland, W. Glassy carbon as standard for the normalization of small-angle scattering intensities. J. Appl. Crystallogr. 1972, 5, 116–119.CrossRefGoogle Scholar
  19. [19]
    Russell, T. P.; Lin, J. S.; Spooner, S.; Wignall, G. D. Intercalibration of small-angle X-ray and neutron scattering data. J. Appl. Crystallogr. 1988, 21, 629–638.CrossRefGoogle Scholar
  20. [20]
    Dreiss, C. A.; Jack, K. S.; Parker, A. P. On the absolute calibration of bench-top small-angle X-ray scattering instruments: A comparison of different standard methods. J. Appl. Crystallogr. 2006, 39, 32–38.CrossRefGoogle Scholar
  21. [21]
    Chen, M.; Ye, C. Y.; Zhou, S. X.; Wu, L. M. Recent advances in applications and performance of inorganic hollow spheres in devices. Adv. Mater. 2013, 25, 5343–5351.CrossRefGoogle Scholar
  22. [22]
    Kohlbrecher, J. SASfit: A Program for Fitting Simple Structural Models to Small Angle Scattering Data. Paul Scherrer Institute, Laboratory for Neutron Scattering: Villigen, Switzerland, 2014.Google Scholar
  23. [23]
    Ruckdeschel, P.; Kemnitzer, T. W.; Nutz, F. A.; Senker, J.; Retsch, M. Hollow silica sphere colloidal crystals: Insights into calcination dependent thermal transport. Nanoscale 2015, 7, 10059–10070.CrossRefGoogle Scholar
  24. [24]
    Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.CrossRefGoogle Scholar
  25. [25]
    Förster, S.; Apostol, L.; Bras, W. Scatter: Software for the analysis of nano- and mesoscale small-angle scattering. J. Appl. Crystallogr. 2010, 43, 639–646.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pia Ruckdeschel
    • 1
  • Martin Dulle
    • 2
  • Tobias Honold
    • 3
  • Stephan Förster
    • 2
  • Matthias Karg
    • 3
  • Markus Retsch
    • 1
  1. 1.Physical Chemistry 1–Polymer SystemsUniversity of BayreuthBayreuthGermany
  2. 2.Physical Chemistry 1University of BayreuthBayreuthGermany
  3. 3.Physical Chemistry 1–Colloidal SystemsUniversity of BayreuthBayreuthGermany

Personalised recommendations