Skip to main content
Log in

Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogeneous catalysis occurs through a process of interfacial reactions; therefore, both surface facet and size control can increase catalytic efficiency. Octahedral Pd nanocrystals, enclosed by {111} facets, should be the ideal geometrical shape for Heck coupling reactions; however, it is challenging to synthesize 5 nm Pd octahedrons with a relatively uniform size distribution using existing capping-agent techniques. Here, we used palladium as a model system to investigate how the kinetics of atomic addition could be precisely controlled using a syringe pump. As a result, our method produced Pd octahedrons as small as 5 nm, which increased the catalytic efficiency of Heck coupling reactions while reducing the weight of catalyst used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, R.; Kobayashi, S. The polymer incarcerated method for the preparation of highly active heterogeneous palladium catalysts. J. Am. Chem. Soc. 2003, 125, 3412–3413.

    Article  Google Scholar 

  2. Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. D. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 2006, 45, 7824–7828.

    Article  Google Scholar 

  3. Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y.; et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc. 2013, 135, 3200–3207.

    Article  Google Scholar 

  4. Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 2008, 47, 3588–3591.

    Article  Google Scholar 

  5. Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.

    Article  Google Scholar 

  6. Xiong, Y. J.; Wiley, B.; Xia, Y. N. Nanocrystals with unconventional shapes—A class of promising catalysts. Angew. Chem. Int. Ed. 2007, 46, 7157–7159.

    Article  Google Scholar 

  7. Collins, G.; Schmidt, M.; O’Dwyer, C.; Holmes, J. D.; McGlacken, G. P. The origin of shape sensitivity in palladium-catalyzed Suzuki-Miyaura cross coupling reactions. Angew. Chem. Int. Ed. 2014, 53, 4142–4145.

    Article  Google Scholar 

  8. Long, R.; Mao, K. K.; Gong, M.; Zhou, S.; Hu, J. H.; Zhi, M.; You, Y.; Bai, S.; Jiang, J.; Zhang, Q.; et al. Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects. Angew. Chem. Int. Ed. 2014, 53, 3205–3209.

    Article  Google Scholar 

  9. Xiong, Y. J.; Brunson, M.; Huh, J.; Huang, A.; Coster, A.; Wendt, K.; Fay, J.; Qin, D. The role of surface chemistry on the toxicity of ag nanoparticles. Small 2013, 9, 2628–2638.

    Article  Google Scholar 

  10. Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.

    Article  Google Scholar 

  11. Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254–1262.

    Article  Google Scholar 

  12. Choi, H. R.; Woo, H.; Jang, S.; Cheon, J. Y.; Kim, C.; Park, J.; Park, K. H.; Joo, S. H. Ordered mesoporous carbon supported colloidal Pd nanoparticle based model catalysts for Suzuki coupling reactions: Impact of organic capping agents. Chemcatchem 2012, 4, 1587–1594.

    Article  Google Scholar 

  13. Kalbasi, R. J.; Mosaddegh, N.; Abbaspourrad, A. A novel catalyst containing palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/CMK-1: Synthesis, characterization and comparison with mesoporous silica nanocomposite. Appl. Catal. A-Gen. 2012, 423, 78–90.

    Article  Google Scholar 

  14. Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed synthesis of atom-economical pd/ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. J. Am.Chem. Soc. 2004, 126, 5026–5027.

    Article  Google Scholar 

  15. Metin, O.; Ho, S. F.; Alp, C.; Can, H.; Mankin, M. N.; Gultekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

    Article  Google Scholar 

  16. Gan, L.; Cui, C. C.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.

    Article  Google Scholar 

  17. Hardeveld, R. V.; Hartog, F. The statistics of surface atoms and surface sites on metal crystals. Sur. Sci. 1969, 15, 189–230.

    Article  Google Scholar 

  18. Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

    Article  Google Scholar 

  19. Li, B.; Long, R.; Zhong, X. L.; Bai, Y.; Zhu, Z. J.; Zhang, X.; Zhi, M.; He, J. W.; Wang, C. M.; Li, Z.-Y.; et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small 2012, 8, 1710–1716.

    Article  Google Scholar 

  20. Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals. J. Am. Chem. Soc. 2009, 131, 13916–13917.

    Article  Google Scholar 

  21. Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am.Chem. Soc. 2007, 129, 3665–3675.

    Article  Google Scholar 

  22. Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q. A.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552–8553.

    Article  Google Scholar 

  23. Xiong, Y. J.; McLellan, J. M.; Yin, Y. D.; Xia, Y. N. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. Int. Ed. 2007, 46, 790–794.

    Article  Google Scholar 

  24. Shao, M. H.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. N. Electrocatalysis on shape-controlled palladium nanocrystals: Oxygen reduction reaction and formic acid oxidation. J. Phys. Chem. C 2013, 117, 4172–4180.

    Article  Google Scholar 

  25. Lim, B.; Xiong, Y. J.; Xia, Y. N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 9279–9282.

    Article  Google Scholar 

  26. Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.

    Article  Google Scholar 

  27. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2008, 48, 60–103.

    Article  Google Scholar 

  28. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Aloni, S.; Yin, Y. D. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am.Chem. Soc. 2005, 127, 7332–7333.

    Article  Google Scholar 

  29. Gladysz, J. A. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. Pure Appl. Chem. 2001, 73, 1319–1324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Xiong.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, R., Wu, D., Li, Y. et al. Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control. Nano Res. 8, 2115–2123 (2015). https://doi.org/10.1007/s12274-015-0722-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0722-1

Keywords

Navigation