Skip to main content
Log in

Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200–210 °C using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA·h·g−1 after 21 cycles at a rate of 20 mA·g−1. Furthermore, after the nanotubes were calcined (600 °C, 4 h) or reduced (180 °C, 10 h), the corresponding discharge capacities increased to 277.2 mA·h·g−1 and 308.5 mA·h·g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  2. Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.

    Article  CAS  Google Scholar 

  3. Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron Nitride nanotubes. Science 1995, 269, 966–967.

    Article  CAS  Google Scholar 

  4. Goldberger, J.; Fan, R.; Yang, P. D. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 2006, 39, 239–248.

    Article  CAS  Google Scholar 

  5. Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.

    Article  CAS  Google Scholar 

  6. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.

    Article  CAS  Google Scholar 

  7. Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.

    Article  CAS  Google Scholar 

  8. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2420.

    Article  CAS  Google Scholar 

  9. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.

    Article  CAS  Google Scholar 

  10. Wang, X.; Zhuang, J.; Chen, J.; Zhou, K. B.; Li, Y. D. Thermally stable silicate nanotubes. Angew.Chem. Int. Ed. 2004, 43, 2017–2020.

    Article  CAS  Google Scholar 

  11. Zhuang, Y.; Yang, Y.; Xiang, G. L.; Wang, X. Magnesium silicate hollow nanostructures as highly efficient absorbents for toxic metal ions. J. Phys. Chem. C 2009, 113, 10441–10445.

    Article  CAS  Google Scholar 

  12. Yang, Y.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Fine tuning of the dimensions of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions. Nano Res. 2010, 3, 581–593.

    Article  Google Scholar 

  13. Roy, D. M.; Roy, R. An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Amer. Mineral. 1954, 19, 957–975.

    Google Scholar 

  14. Perbost, R.; Amouric, M.; Olives, J. Influence of cation size on the curvature of serpentine minerals: HRTEM-AEM study and elastic theory. Clays Clay Miner. 2003, 51, 430–438.

    Article  CAS  Google Scholar 

  15. Korytkova, E. N.; Pivovarova, L. N.; Drozdova, I. A.; Gusarov, V. V. Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions. Glass Phys. Chem. 2005, 31, 797–802.

    Article  CAS  Google Scholar 

  16. Korytkova, E. N.; Maslov, A. V.; Pivovarova, L. N.; Polegotchenkova, Y. V.; Povinich, V. F.; Gusarov, V. V. Synthesis of nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures. Inorg. Mater. 2005, 41, 743–749.

    Article  CAS  Google Scholar 

  17. McDonald, A.; Scott, B.; Villemure, G. Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate. Micropor. Mesopor. Mater. 2009, 120, 263–266.

    Article  CAS  Google Scholar 

  18. Pauling, L. The structure of the chlorites. Proc. Natl. Acad. Sci. U.S.A. 1930, 16, 578–582.

    Article  CAS  Google Scholar 

  19. Hu, S.; Wang, X. MoO3 single-walled nanotubes. J. Am. Chem. Soc. 2008, 130, 8126–8127.

    Article  CAS  Google Scholar 

  20. Foresiti, E.; Hochella, M. F.; Kornishi, H.; Lesci, I. G.; Madden, A. S.; Roveri, N.; Xu, H. Morphological and chemical/physical characterization of Fe-doped synthetic chrysotile nanotubes. Adv. Funct. Mater. 2005, 15, 1009–1016.

    Article  Google Scholar 

  21. Suquet, H. Effects of dry grinding and leaching on the crystal structures of chrysotile. Clays Clay Miner. 1989, 37, 439–445.

    Article  CAS  Google Scholar 

  22. Al-Alayed, O. S.; Kunzru, D. Cyclohexane dehydrogenation on a nickel catalyst-kinetics and catalyst fouling. J. Chem. Technol. Biotechnol. 1988, 43, 23–38.

    Article  Google Scholar 

  23. Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J. H.; Bae, C. J.; Park, J. G.; Hyeon, T. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17, 429–434.

    Article  CAS  Google Scholar 

  24. Killelea, D. R.; Campbell, V. L.; Shuman, N. S.; Utz, A. L. Bond-selective control of a heterogeneously catalyzed reaction. Science 2008, 319, 790–793.

    Article  CAS  Google Scholar 

  25. McCarren, P. R.; Liu, P.; Cheong, P. H. Y.; Jamison, T. F.; Houk, K. N. Mechanism and transition-state structures for nickel-catalyzed reductive alkyne-aldehyde coupling reactions. J. Am. Chem. Soc. 2009, 131, 6654–6655.

    Article  CAS  Google Scholar 

  26. Bozorth, R. M. Ferromagnetism; D. Van Nostrand Company, Inc.: New York, 1951.

    Google Scholar 

  27. Ma, R.; Bando, Y.; Zang, L.; Sasaki, T. Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements. Adv. Mater. 2004, 16, 918–922.

    Article  CAS  Google Scholar 

  28. Park, D. H.; Lee, S. H.; Kim, T. W.; Lim, S. T.; Hwang, S. J.; Yoon, Y. S.; Lee, Y. H.; Choy, J. H. Non-hydrothermal synthesis of ID nanostructured manganese-based oxides: Effect of cation substitution on the electrochemical performance of nanowires. Adv. Funct. Mater. 2007, 17, 2949–2956.

    Article  CAS  Google Scholar 

  29. Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712–3716.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghong Li or Xun Wang.

Additional information

Contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Liang, Q., Li, J. et al. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 4, 882–890 (2011). https://doi.org/10.1007/s12274-011-0144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0144-7

Keywords

Navigation