Nano Research

, Volume 2, Issue 8, pp 617–623 | Cite as

Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols

  • Xiaolei Zuo
  • Cheng Peng
  • Qing Huang
  • Shiping Song
  • Lihua Wang
  • Di Li
  • Chunhai Fan
Open Access
Research Article


We report a novel nanotechnology-based approach for the highly efficient catalytic oxidation of phenols and their removal from wastewater. We use a nanocomplex made of multi-walled carbon nanotubes (MWNTs) and magnetic nanoparticles (MNPs). This nanocomplex retains the magnetic properties of individual MNPs and can be effectively separated under an external magnetic field. More importantly, the formation of the nanocomplex enhances the intrinsic peroxidase-like activity of the MNPs that can catalyze the reduction of hydrogen peroxide (H2O2). Significantly, in the presence of H2O2, this nanocomplex catalyzes the oxidation of phenols with high efficiency, generating insoluble polyaromatic products that can be readily separated from water.


Carbon nanotubes magnetic nanoparticles phenol peroxidase catalysis 


  1. [1]
    Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Editorial: Cleaning up water. Nat. Mater. 2008, 7, 341.Google Scholar
  3. [3]
    Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.PubMedCrossRefGoogle Scholar
  4. [4]
    Su, Y. Y.; He, Y.; Lu, H. T.; Sai, L. M.; Li, Q. N.; Li, W. X.; Wang, L. H.; Shen, P. P.; Huang, Q.; Fan, C. H. The cytotoxicity of cadmium-based, aqueous phasesynthesized, quantum dots and its modulation by surface coating. Biomaterials 2009, 30, 19–25.CrossRefGoogle Scholar
  5. [5]
    Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.PubMedCrossRefGoogle Scholar
  6. [6]
    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 2008, 3, 31–35.CrossRefADSGoogle Scholar
  8. [8]
    Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.PubMedCrossRefGoogle Scholar
  9. [9]
    Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–168.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Small-diameter silicon nanowire surfaces. Science 2003, 299, 1874–1877.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.PubMedCrossRefGoogle Scholar
  12. [12]
    Freudenberg, K.; Neish, A. C. Constitution and Biosynthesis of Lignin; Springer: New York, 1968.Google Scholar
  13. [13]
    Klibanov, A. M.; Tu, T. M.; Scott, K. P. Peroxidasecatalyzed removal of phenols from coal-conversion waste-waters. Science 1983, 221, 259–260.PubMedCrossRefADSGoogle Scholar
  14. [14]
    Lim, Y. T.; Cho, M. Y.; Lee, J. M.; Chung, S. J.; Chung, B. H. Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system. Biomaterials 2009, 30, 1197–1204.PubMedCrossRefGoogle Scholar
  15. [15]
    Chertok, B.; Moffat, B. A.; David, A. E.; Yu, F. Q.; Bergemann, C.; Ross, B. D.; Yang, V. C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008, 29, 487–496.PubMedCrossRefGoogle Scholar
  16. [16]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Ho, M. Y. K.; Rethnitz, G. A. Highly stable biosensor using an artificial enzyme. Anal. Chem. 1987, 59, 536–537.PubMedCrossRefGoogle Scholar
  18. [18]
    Zhang, J. B.; Zhuang, J.; Gao, L. Z.; Zhang, Y.; Gu, N.; Feng, J.; Yang, D. L.; Zhu, J. D.; Yan, X. Y. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 2008, 73, 1524–1528.CrossRefGoogle Scholar
  19. [19]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefADSGoogle Scholar
  20. [20]
    Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.PubMedCrossRefADSGoogle Scholar
  21. [21]
    Ajayan, P. M.; Tour, J. M. Materials science—Nanotube composites. Nature 2007, 447, 1066–1068.PubMedCrossRefADSGoogle Scholar
  22. [22]
    Chen, F. M.; Wang, B.; Chen, Y.; Li, L. J. Towards the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013–3017.PubMedCrossRefADSGoogle Scholar
  23. [23]
    Emerson, E. The condensation of aminoantipyrine. II. A new color test for phenolic compounds. J. Org. Chem. 1943, 8, 417–428.CrossRefGoogle Scholar
  24. [24]
    Ringe, D.; Petsko, G. A. How enzymes work? Science 2008, 320, 1428–1429.PubMedCrossRefGoogle Scholar
  25. [25]
    McDonald, T. J.; Svedruzic, D.; Kim, Y. H.; Blackburn, J. L.; Zhang, S. B.; King, P. W.; Heben, M. J. Wiring-up hydrogenase with single-walled carbon nanotubes. Nano Lett. 2007, 7, 3528–3534.PubMedCrossRefADSGoogle Scholar
  26. [26]
    Yu, J.; Taylor, K. E.; Zou, H. X.; Biswas, N.; Bewtra, J. K. Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water. Environ. Sci. Technol. 1994, 28, 2154–2160.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Xiaolei Zuo
    • 1
  • Cheng Peng
    • 1
  • Qing Huang
    • 1
  • Shiping Song
    • 1
  • Lihua Wang
    • 1
  • Di Li
    • 1
  • Chunhai Fan
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations