Advertisement

Archives of Pharmacal Research

, Volume 31, Issue 9, pp 1200–1204 | Cite as

Effect of pioglitazone on the pharmacokinetics of verapamil and its major metabolite, norverapamil, in rats

  • Jun Shik Choi
  • Jin Pil BurmEmail author
Research Articles Drug Development

Abstract

Pioglitazone, a thiazolidinedione antidiabetic drug, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. This study investigated the effect of pioglitazone on the pharmacokinetics of verapamil and its major metabolite, norverapamil, in rats, after oral administration of verapamil (9 mg/kg) in the presence or absence of pioglitazone (0.3 or 1.0 mg/kg). Pioglitazone altered verapamil pharmacokinetics compared with verapamil alone. The presence of 1.0 mg/kg of pioglitazone significantly (p < 0.05) increased the area under the plasma concentration-time curve (AUC) and the peak concentration (Cmax) of verapamil by 49.0% and 46.8%, respectively, and significantly (p < 0.05) decreased the total plasma clearance (CL/F) of verapamil by 32.8%. The metabolite-parent AUC ratio in the presence of pioglitazone (1.0 mg/kg) significantly (p < 0.05) decreased by 21.9% compared to the control group. Thus, coadministration of pioglitazone inhibited the CYP3A4-mediated metabolism of verapamil.

Key words

Verapamil Norverapamil Pioglitazone Pharmacokinetics CYP3A4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benet, L. Z., Cummins, C. L., and Wu, C. Y., Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr. Drug. Metab., 4, 393–398 (2003).PubMedCrossRefGoogle Scholar
  2. Busse, D., Cosme, J., Beaune, P., Kroemer, H. K., and Eichelbaum, M., Cytochromes of the 450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch. Pharmacol., 353, 116–121 (1995)PubMedCrossRefGoogle Scholar
  3. Chilcott, J., Tappenden, P., Jones, M. L., and Wight, J. P., A systematic review of the clinical effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clin. Ther., 23, 1792–1823 (2001).PubMedCrossRefGoogle Scholar
  4. Cummins, C. L., Jacobsen, W., and Benet, L. Z., Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther., 300, 1036–1045 (2002).PubMedCrossRefGoogle Scholar
  5. Eichelbaum, M., Mikus, G., and Vogelgesang, B., Pharmacokinetics of (+)-, (−)-and (±)-verapamil after intravenous administration. Brit. J. Clin. Pharmacol., 17, 453–458 (1984).Google Scholar
  6. Eichelbaum, M., Remberg, E. G., Schomerus, M., and Dengler, H. J., The metabolism of D, L(14C) verapamil in man. Drug. Metab. Dispos., 7, 145–148 (1979).PubMedGoogle Scholar
  7. Fleckenstein, A., Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol., 17, 149–166 (1977).CrossRefGoogle Scholar
  8. Gould, B. A,, Mann, S., Kieso, H., Bala Subramanian, V., and Raftery, E. B., The 24 h ambulatory blood pressure profile with verapamil. Circulation, 65, 22–25 (1982).PubMedGoogle Scholar
  9. Kajosaari, L. I., Jaakkola, T., Neuvonen, P. J., and Backman, J. T., Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide. Eur. J. Clin. Pharmacol., 62, 217–223 (2006).PubMedCrossRefGoogle Scholar
  10. Krecic-Shepard, M. E., Barnas, C. R., Slimko, J., and Schwartz, J. B., Faster clearance of sustained release verapamil in men versus women: Continuing observations on sex-specific differences after oral administration of verapamil. Clin. Pharmacol. Ther., 68, 286–292 (2000).PubMedCrossRefGoogle Scholar
  11. Lewis, G. R., Morley, K. D., Lewis, B. M., and Bones, P. J., The treatment of hypertension with verapamil. NZ. Medical. J., 87, 351–354 (1978).Google Scholar
  12. Prueksaritanont, T., Vega, J. M., Zhao, J., Gagliano, K., Kuznetsova, O., Musser, B., Amin, R. D., Liu, L., Roadcap, A., Dilzer, S., Lasseter, K. C., and Rogers, J. D., Interactions between simvastatin and troglitazone or pioglitazone in healthy subjects. J. Clin. Pharmacol., 41, 573–581 (2001).PubMedCrossRefGoogle Scholar
  13. Rocci, M. L., and Jusko, W. J., LAGRAN program for area and moments in pharmacokinetic analysis. Computer Programs in Biomedicine, 16, 203–209 (1983).PubMedCrossRefGoogle Scholar
  14. Schomerus, M., Spiegelhaider, B., Stieren, B., and Eichelbaum, M., Physiologic disposition of verapamil in man. Cardiovasc. Res., 10, 605–612 (1976).PubMedCrossRefGoogle Scholar
  15. Sahi, J., Black, C. B., Hamilton, G. A., Zheng, X., Jolley, S., Rose, K. A., Gilbert, D., LeCluyse, E. L., and Sinz, M. W., Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab. Dispos., 31, 439–446 (2003).PubMedCrossRefGoogle Scholar
  16. Wacher, V. J., Wu, C. Y., and Benet, L. Z., Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog., 13, 129–134 (1995).PubMedCrossRefGoogle Scholar
  17. Walsky, R. L., Gaman, E. A., and Obach, R. S., Examination of 209 drugs for inhibition of cytochrome P450 2C8. J. Clin. Pharmacol., 45, 68–78 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  1. 1.College of PharmacyChosun UniversityGwangjuKorea
  2. 2.Chosun Nursing CollegeGwangjuKorea

Personalised recommendations