Intramyocardial Navigation and Mapping for Stem Cell Delivery

  • Peter J. PsaltisEmail author
  • Andrew C. W. Zannettino
  • Stan Gronthos
  • Stephen G. Worthley


Method for delivery remains a central component of stem cell-based cardiovascular research. Comparative studies have demonstrated the advantages of administering cell therapy directly into the myocardium, as distinct from infusing cells into the systemic or coronary vasculature. Intramyocardial delivery can be achieved either transepicardially or transendocardially. The latter involves percutaneous, femoral arterial access and the retrograde passage of specially designed injection catheters into the left ventricle, making it less invasive and more relevant to wider clinical practice. Imaging-based navigation plays an important role in guiding catheter manipulation and directing endomyocardial injections. The most established strategy for three-dimensional, intracardiac navigation is currently endoventricular, electromechanical mapping, which offers superior spatial orientation compared to simple x-ray fluoroscopy. Its provision of point-by-point, electrophysiologic and motion data also allows characterization of regional myocardial viability, perfusion, and function, especially in the setting of ischemic heart disease. Integrating the mapping catheter with an injection port enables this diagnostic information to facilitate the targeting of intramyocardial stem cell delivery. This review discusses the diagnostic accuracy and expanding therapeutic application of electromechanical navigation in cell-based research and describes exciting developments which will improve the technology’s sensing capabilities, image registration, and delivery precision in the near future.


Cardiac Navigation Electromechanical Mapping Intramyocardial Delivery Myocardial Viability NOGA Stem Cell Therapy 



The authors thank Dr. Emerson Perin and Mr. Fred Baimbridge (Texas Heart Institute, Houston, TX, USA) for kindly providing the image in Fig. 3. The authors have no financial conflicts to report. Dr. Psaltis is supported by a Postgraduate Medical Scholarship from the National Health and Medical Research Council of Australia (ID 390711) and the National Heart Foundation of Australia (PB 05A 2312) and a Dawes Scholarship from the Royal Adelaide Hospital.


  1. 1.
    Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.CrossRefPubMedGoogle Scholar
  2. 2.
    Beeres, S. L., Bax, J. J., Dibbets-Schneider, P., Stokkel, M. P., Fibbe, W. E., van der Wall, E. E., et al. (2006). Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results. American Heart Journal, 152(4), 684.e11–684.e16.CrossRefGoogle Scholar
  3. 3.
    Beeres, S. L., Zeppenfeld, K., Bax, J. J., Dibbets-Schneider, P., Stokkel, M. P., Fibbe, W. E., et al. (2007). Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease. Heart Rhythm, 4(3), 257–265.CrossRefPubMedGoogle Scholar
  4. 4.
    Behfar, A., Faustino, R. S., Arrell, D. K., Dzeja, P. P., Perez-Terzic, C., & Terzic, A. (2008). Guided stem cell cardiopoiesis: discovery and translation. Journal of Molecular and Cellular Cardiology, 45(4), 523–529.CrossRefPubMedGoogle Scholar
  5. 5.
    Ben-Haim, S. A., Osadchy, D., Schuster, I., Gepstein, L., Hayam, G., & Josephson, M. E. (1996). Nonfluoroscopic, in vivo navigation and mapping technology. Natural Medicines, 2(12), 1393–1395.CrossRefGoogle Scholar
  6. 6.
    Botker, H. E., Lassen, J. F., Hermansen, F., Wiggers, H., Sogaard, P., Kim, W. Y., et al. (2001). Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation, 103(12), 1631–1637.PubMedGoogle Scholar
  7. 7.
    Chazaud, B., Hittinger, L., Sonnet, C., Champagne, S., Le Corvoisier, P., Benhaiem-Sigaux, N., et al. (2003). Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovascular Research, 58(2), 444–450.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, Y., Sherman, W., Yi, G., Conditt, G., Sheehy, A., Martens, T., et al. (2009). Real time 3D echo guided intramyocardial delivery of mesenchymal precursor cells in a chronic myocardial infarct ovine model using a novel catheter. Journal of the American College of Cardiology, 53(10 Suppl A), A41.Google Scholar
  9. 9.
    Corti, R., Badimon, J., Mizsei, G., Macaluso, F., Lee, M., Licato, P., et al. (2005). Real time magnetic resonance guided endomyocardial local delivery. Heart, 91(3), 348–353.CrossRefPubMedGoogle Scholar
  10. 10.
    de Leeuw, N., Ruiter, D. J., Balk, A. H., de Jonge, N., Melchers, W. J., & Galama, J. M. (2001). Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transplant International, 14(5), 299–306.CrossRefPubMedGoogle Scholar
  11. 11.
    de Silva, R., Gutierrez, L. F., Raval, A. N., McVeigh, E. R., Ozturk, C., & Lederman, R. J. (2006). X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation, 114(22), 2342–2350.CrossRefPubMedGoogle Scholar
  12. 12.
    Dib, N., Dinsmore, J., Lababidi, Z., White, B., Moravec, S., Campbell, A., et al. (2009). One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovascular Interventions, 2(1), 9–16.CrossRefPubMedGoogle Scholar
  13. 13.
    Dick, A. J., Guttman, M. A., Raman, V. K., Peters, D. C., Pessanha, B. S., Hill, J. M., et al. (2003). Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation, 108(23), 2899–2904.CrossRefPubMedGoogle Scholar
  14. 14.
    Dohmann, H. F., Perin, E. C., Takiya, C. M., Silva, G. V., Silva, S. A., Sousa, A. L., et al. (2005). Transendocardial autologous bone marrow mononuclear cell injection in ischemic heart failure: postmortem anatomicopathologic and immunohistochemical findings. Circulation, 112(4), 521–526.CrossRefPubMedGoogle Scholar
  15. 15.
    Erbs, S., Linke, A., Adams, V., Lenk, K., Thiele, H., Diederich, K. W., et al. (2005). Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circulation Research, 97(8), 756–762.CrossRefPubMedGoogle Scholar
  16. 16.
    Fernandes, M. R., Silva, G., Cardoso, C. O., Zheng, Y., Baimbridge, F., Cabreira, M. G., et al. (2009). The impact of timing on the safety of transendocardial delivery of mesenchymal precursor stem cells following acute myocardial infarction. Journal of the American College of Cardiology, 53(10 Suppl A), A311.Google Scholar
  17. 17.
    Fernandes, M. R., Silva, G. V., Zheng, Y., Oliveira, E. M., Cardoso, C. O., Canales, J., et al. (2008). Validation of QwikStar catheter for left ventricular electromechanical mapping with NOGA XP system. Texas Heart Institute Journal, 35(3), 240–244.PubMedGoogle Scholar
  18. 18.
    Fischer-Rasokat, U., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., Fichtlscherer, S., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with non-ischemic dilated cardiomyopathy: Final 1-year results of the TOPCARE-DCM trial. Circulation Heart Failure, 2, 417–423.Google Scholar
  19. 19.
    Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., et al. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27(9), 1114–1122.CrossRefPubMedGoogle Scholar
  20. 20.
    Fuchs, S., Hendel, R. C., Baim, D. S., Moses, J. W., Pierre, A., Laham, R. J., et al. (2001). Comparison of endocardial electromechanical mapping with radionuclide perfusion imaging to assess myocardial viability and severity of myocardial ischemia in angina pectoris. American Journal of Cardiology, 87(7), 874–880.CrossRefPubMedGoogle Scholar
  21. 21.
    Fuchs, S., Kornowski, R., Shiran, A., Pierre, A., Ellahham, S., & Leon, M. B. (1999). Electromechanical characterization of myocardial hibernation in a pig model. Coronary Artery Disease, 10(3), 195–198.CrossRefPubMedGoogle Scholar
  22. 22.
    Fuchs, S., Kornowski, R., Weisz, G., Satler, L. F., Smits, P. C., Okubagzi, P., et al. (2006). Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. American Journal of Cardiology, 97(6), 823–829.CrossRefPubMedGoogle Scholar
  23. 23.
    Gavira, J. J., Nasarre, E., Abizanda, G., Perez-Ilzarbe, M., de Martino-Rodriguez, A., Garcia de Jalon, J. A., et al. (2009). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. European Heart Journal, (in press).Google Scholar
  24. 24.
    Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J. A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71(4), 744–753.CrossRefPubMedGoogle Scholar
  25. 25.
    Gepstein, L., Hayam, G., & Ben-Haim, S. A. (1997a). A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation, 95(6), 1611–1622.PubMedGoogle Scholar
  26. 26.
    Gepstein, L., Hayam, G., Shpun, S., & Ben-Haim, S. A. (1997b). Hemodynamic evaluation of the heart with a nonfluoroscopic electromechanical mapping technique. Circulation, 96(10), 3672–3680.PubMedGoogle Scholar
  27. 27.
    Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Natural Medicines, 11(4), 367–368.CrossRefGoogle Scholar
  28. 28.
    Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.CrossRefPubMedGoogle Scholar
  29. 29.
    Graf, S., Gyongyosi, M., Khorsand, A., Nekolla, S. G., Pirich, C., Kletter, K., et al. (2004). Electromechanical properties of perfusion/metabolism mismatch: comparison of nonfluoroscopic electroanatomic mapping with 18F-FDG PET. Journal of Nuclear Medicine, 45(10), 1611–1618.PubMedGoogle Scholar
  30. 30.
    Grossman, P. M., Han, Z., Palasis, M., Barry, J. J., & Lederman, R. J. (2002). Incomplete retention after direct myocardial injection. Catheterization and Cardiovascular Interventions, 55(3), 392–397.CrossRefPubMedGoogle Scholar
  31. 31.
    Gyongyosi, M., Lang, I., Dettke, M., Beran, G., Graf, S., Sochor, H., et al. (2009). Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nature Clinical Practice Cardiovascular Medicine, 6(1), 70–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Heng, B. C., Hsu, S. H., Cowan, C. M., Liu, A., Tai, J., Chan, Y., et al. (2009). Trans-catheter injection induced changes in human bone marrow-derived mesenchymal stem cells. Cell Transplant (in press).Google Scholar
  33. 33.
    Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., Price, E. T., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation, 112(9 Suppl), I150–I156.PubMedGoogle Scholar
  34. 34.
    Hsia, H. H., & Marchlinski, F. E. (2002). Characterization of the electroanatomic substrate for monomorphic ventricular tachycardia in patients with nonischemic cardiomyopathy. Pacing and Clinical Electrophysiology, 25(7), 1114–1127.CrossRefPubMedGoogle Scholar
  35. 35.
    Ince, H., Petzsch, M., Rehders, T. C., Chatterjee, T., & Nienaber, C. A. (2004). Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. Journal of Endovascular Therapy, 11(6), 695–704.CrossRefPubMedGoogle Scholar
  36. 36.
    Kaye, D. M., Preovolos, A., Marshall, T., Byrne, M., Hoshijima, M., Hajjar, R., et al. (2007). Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. Journal of the American College of Cardiology, 50(3), 253–260.CrossRefPubMedGoogle Scholar
  37. 37.
    Keck, A., Hertting, K., Schwartz, Y., Kitzing, R., Weber, M., Leisner, B., et al. (2002). Electromechanical mapping for determination of myocardial contractility and viability. A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. Journal of the American College of Cardiology, 40(6), 1067–1074.CrossRefPubMedGoogle Scholar
  38. 38.
    Kornowski, R., Fuchs, S., Shiran, A., Summers, N., Pietrusewicz, M., Ellahham, S., et al. (2001). Catheter-based electromechanical mapping to assess regional myocardial function: a comparative analysis with transthoracic echocardiography. Catheterization and Cardiovascular Interventions, 52(3), 342–347.CrossRefPubMedGoogle Scholar
  39. 39.
    Kornowski, R., Hong, M. K., Gepstein, L., Goldstein, S., Ellahham, S., Ben-Haim, S. A., et al. (1998a). Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation, 98(11), 1116–1124.PubMedGoogle Scholar
  40. 40.
    Kornowski, R., Hong, M. K., & Leon, M. B. (1998b). Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation, 98(18), 1837–1841.PubMedGoogle Scholar
  41. 41.
    Kornowski, R., Leon, M. B., Fuchs, S., Vodovotz, Y., Flynn, M. A., Gordon, D. A., et al. (2000). Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. Journal of the American College of Cardiology, 35(4), 1031–1039.CrossRefPubMedGoogle Scholar
  42. 42.
    Krause, K., Jaquet, K., Schneider, C., Haupt, S., Lioznov, M. V., Otte, K. M., et al. (2009). Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart, 95(14), 1145–1152.CrossRefPubMedGoogle Scholar
  43. 43.
    Lau, G. T., Yoneyama, R., Kawase, Y., Ly, H. Q., Hoshino, K., Pomerantseva, I., et al. (2009). Accuracy of non-fluoroscopic cather based electromechanically-guided (NOGA) mononuclear cell endocardial injection in a swine myocardial infarction model assessed by MRI. Heart, Lung and Circulation, 18(Suppl 3), S73.CrossRefGoogle Scholar
  44. 44.
    Leon, M. B., Kornowski, R., Downey, W. E., Weisz, G., Baim, D. S., Bonow, R. O., et al. (2005). A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. Journal of the American College of Cardiology, 46(10), 1812–1819.CrossRefPubMedGoogle Scholar
  45. 45.
    Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiological Reviews, 85(4), 1373–1416.CrossRefPubMedGoogle Scholar
  46. 46.
    Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V., Durgin, M., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation, 115(25), 3165–3172.CrossRefPubMedGoogle Scholar
  47. 47.
    Martens, T. P., Godier, A. F., Parks, J. J., Wan, L. Q., Koeckert, M. S., Eng, G. M., et al. (2009). Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplantation, 18(3), 297–304.CrossRefPubMedGoogle Scholar
  48. 48.
    Menasche, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation, 117(9), 1189–1200.CrossRefPubMedGoogle Scholar
  49. 49.
    Opie, S. R., & Dib, N. (2006). Surgical and catheter delivery of autologous myoblasts in patients with congestive heart failure. Nature Clinical Practice Cardiovascular Medicine, 3(Suppl 1), S42–S45.CrossRefPubMedGoogle Scholar
  50. 50.
    Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Mesquita, C. T., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.CrossRefPubMedGoogle Scholar
  51. 51.
    Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Silva, G. V., et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110(11 Suppl 1), II213–II218.PubMedGoogle Scholar
  52. 52.
    Perin, E. C., Silva, G. V., Assad, J. A., Vela, D., Buja, L. M., Sousa, A. L., et al. (2008). Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44(3), 486–495.CrossRefPubMedGoogle Scholar
  53. 53.
    Perin, E. C., Silva, G. V., Fernandes, M. R., Munger, T., Pandey, A., Sehra, R., et al. (2007). First experience with remote left ventricular mapping and transendocardial cell injection with a novel integrated magnetic navigation-guided electromechanical mapping system. Eurointervention, 3(1), 142–148.PubMedGoogle Scholar
  54. 54.
    Perin, E. C., Silva, G. V., Sarmento-Leite, R., Sousa, A. L., Howell, M., Muthupillai, R., et al. (2002). Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation, 106(8), 957–961.CrossRefPubMedGoogle Scholar
  55. 55.
    Poh, K. K., Sperry, E., Young, R. G., Freyman, T., Barringhaus, K. G., & Thompson, C. A. (2007). Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: safety of a high dose, “off-the-shelf”, cellular cardiomyoplasty strategy. International Journal of Cardiology, 117(3), 360–364.CrossRefPubMedGoogle Scholar
  56. 56.
    Pompilio, G., Steinhoff, G., Liebold, A., Pesce, M., Alamanni, F., Capogrossi, M. C., et al. (2008). Direct minimally invasive intramyocardial injection of bone marrow-derived AC133+ stem cells in patients with refractory ischemia: preliminary results. Thoracic and Cardiovascular Surgeon, 56(2), 71–76.CrossRefPubMedGoogle Scholar
  57. 57.
    Poppas, A., Sheehan, F. H., Reisman, M., Harms, V., & Kornowski, R. (2004). Validation of viability assessment by electromechanical mapping by three-dimensional reconstruction with dobutamine stress echocardiography in patients with coronary artery disease. American Journal of Cardiology, 93(9), 1097–1101.CrossRefPubMedGoogle Scholar
  58. 58.
    Psaltis, P. J., Carbone, A., Nelson, A., Lau, D. H., Manavis, J., Finnie, J., et al. (2008a). An ovine model of toxic, nonischemic cardiomyopathy—assessment by cardiac magnetic resonance imaging. Journal of Cardiac Failure, 14(9), 785–795.CrossRefPubMedGoogle Scholar
  59. 59.
    Psaltis, P. J., Gronthos, S., Worthley, S. G., & Zannettino, A. C. W. (2008b). Cellular therapy for cardiovascular disease part 2—delivery of cells and clinical experience. Clinical Medicine: Cardiology, 2, 139–151.Google Scholar
  60. 60.
    Psaltis, P. J., Nelson, A. J., Carbone, A., Lau, D. H., Jantzen, T., Williams, K., et al. (2009). Cardiac repair with intramyocardial injection of allogeneic mesenchymal precursor cells for experimental nonischaemic cardiomyopathy. Heart, Lung and Circulation, 18(Suppl 3), S74.CrossRefGoogle Scholar
  61. 61.
    Psaltis, P. J., & Worthley, S. G. (2009). Endoventricular electromechanical mapping—the diagnostic and therapeutic utility of the NOGA® XP Cardiac Navigation System. Journal of Cardiovascular Translational Research, 2(1), 48–62.CrossRefGoogle Scholar
  62. 62.
    Psaltis, P. J., Zannettino, A. C., Worthley, S. G., & Gronthos, S. (2008c). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26(9), 2201–2210.CrossRefPubMedGoogle Scholar
  63. 63.
    Rezaee, M., Yeung, A. C., Altman, P., Lubbe, D., Takeshi, S., Schwartz, R. S., et al. (2001). Evaluation of the percutaneous intramyocardial injection for local myocardial treatment. Catheterization and Cardiovascular Interventions, 53(2), 271–276.CrossRefPubMedGoogle Scholar
  64. 64.
    Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1210–1221.CrossRefPubMedGoogle Scholar
  65. 65.
    Siminiak, T., Fiszer, D., Jerzykowska, O., Grygielska, B., Rozwadowska, N., Kalmucki, P., et al. (2005). Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. European Heart Journal, 26(12), 1188–1195.CrossRefPubMedGoogle Scholar
  66. 66.
    Smeets, J. L., Ben-Haim, S. A., Rodriguez, L. M., Timmermans, C., & Wellens, H. J. (1998). New method for nonfluoroscopic endocardial mapping in humans: accuracy assessment and first clinical results. Circulation, 97(24), 2426–2432.PubMedGoogle Scholar
  67. 67.
    Smits, P. C., van Geuns, R. J., Poldermans, D., Bountioukos, M., Onderwater, E. E., Lee, C. H., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42(12), 2063–2069.CrossRefPubMedGoogle Scholar
  68. 68.
    Smits, P. C., van Langenhove, G., Schaar, M., Reijs, A., Bakker, W. H., van der Giessen, W. J., et al. (2002). Efficacy of percutaneous intramyocardial injections using a nonfluoroscopic 3-D mapping based catheter system. Cardiovascular Drugs and Therapy, 16(6), 527–533.CrossRefPubMedGoogle Scholar
  69. 69.
    Steendijk, P., Smits, P. C., Valgimigli, M., van der Giessen, W. J., Onderwater, E. E., & Serruys, P. W. (2006). Intramyocardial injection of skeletal myoblasts: long-term follow-up with pressure-volume loops. Nature Clinical Practice Cardiovascular Medicine, 3(Suppl 1), S94–S100.CrossRefPubMedGoogle Scholar
  70. 70.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMedGoogle Scholar
  71. 71.
    Theiss, H. D., David, R., Engelmann, M. G., Barth, A., Schotten, K., Naebauer, M., et al. (2007). Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). European Heart Journal, 28(10), 1258–1264.CrossRefPubMedGoogle Scholar
  72. 72.
    Tse, H. F., Thambar, S., Kwong, Y. L., Rowlings, P., Bellamy, G., McCrohon, J., et al. (2007). Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). European Heart Journal, 28(24), 2998–3005.CrossRefPubMedGoogle Scholar
  73. 73.
    Vale, P. R., Losordo, D. W., Milliken, C. E., Maysky, M., Esakof, D. D., Symes, J. F., et al. (2000). Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation, 102(9), 965–974.PubMedGoogle Scholar
  74. 74.
    Vale, P. R., Losordo, D. W., Tkebuchava, T., Chen, D., Milliken, C. E., & Isner, J. M. (1999). Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. Journal of the American College of Cardiology, 34(1), 246–254.CrossRefPubMedGoogle Scholar
  75. 75.
    van Ramshorst, J., Bax, J. J., Beeres, S. L., Dibbets-Schneider, P., Roes, S. D., Stokkel, M. P., et al. (2009). Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. Journal of the American Medical Association, 301(19), 1997–2004.CrossRefPubMedGoogle Scholar
  76. 76.
    Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., & Kittleson, M. D. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363(9411), 783–784.CrossRefPubMedGoogle Scholar
  77. 77.
    Wiggers, H., Botker, H. E., Sogaard, P., Kaltoft, A., Hermansen, F., Kim, W. Y., et al. (2003). Electromechanical mapping versus positron emission tomography and single photon emission computed tomography for the detection of myocardial viability in patients with ischemic cardiomyopathy. Journal of the American College of Cardiology, 41(5), 843–848.CrossRefPubMedGoogle Scholar
  78. 78.
    Wolf, T., Gepstein, L., Dror, U., Hayam, G., Shofti, R., Zaretzky, A., et al. (2001). Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. Journal of the American College of Cardiology, 37(6), 1590–1597.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter J. Psaltis
    • 1
    • 2
    Email author
  • Andrew C. W. Zannettino
    • 2
  • Stan Gronthos
    • 2
  • Stephen G. Worthley
    • 1
  1. 1.Cardiovascular Research Centre, Department of Cardiology, Royal Adelaide Hospital and the Department of MedicineUniversity of AdelaideAdelaideAustralia
  2. 2.Bone and Cancer Laboratories, Division of HaematologyInstitute of Medical and Veterinary Science/Hanson Institute & Centre for Stem Cell Research, Robinson Institute, University of AdelaideAdelaideAustralia

Personalised recommendations