Skip to main content

Advertisement

Log in

Endoventricular Electromechanical Mapping—The Diagnostic and Therapeutic Utility of the NOGA® XP Cardiac Navigation System

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Combined analysis of the electrical and mechanical function of the heart holds promise as a means of acquiring a better understanding of a variety of cardiac diseases that ultimately may lead to heart failure. The NOGA® XP Cardiac Navigation System is a unique, nonfluoroscopic, catheter-based technology that achieves real-time acquisition of three-dimensional, endoventricular electromechanical maps. Through the provision of point-by-point measurements of endocardial electrical activation and voltage and mechanical shortening, electromechanical mapping has been evaluated for its ability to identify regional myocardial ischemia and characterize tissue viability. A decade of preclinical and clinical research has verified its safety and feasibility and raised the possibility of its application as a diagnostic adjunct to conventional angiography in the catheterization laboratory. However, this role has not yet been realized outside of the research setting. Instead, a more prominent niche for NOGA® XP has emerged as a therapeutic tool for guiding direct myocardial interventions, most notably the targeted administration of regenerative therapies (e.g., cells, genes) to the heart. In this review, we discuss the fundamental aspects of this electromechanical mapping system and the evidence for both its diagnostic and therapeutic utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ben-Haim, S. A., Osadchy, D., Schuster, I., Gepstein, L., Hayam, G., & Josephson, M. E. (1996). Nonfluoroscopic, in vivo navigation and mapping technology. Nature Medicine, 2, 1393–1395.

    Article  PubMed  CAS  Google Scholar 

  2. Shpun, S., Gepstein, L., Hayam, G., & Ben-Haim, S. A. (1997). Guidance of radiofrequency endocardial ablation with real-time three-dimensional magnetic navigation system. Circulation, 96, 2016–2021.

    PubMed  CAS  Google Scholar 

  3. Shah, D. C., Jais, P., Haissaguerre, M., Chouairi, S., Takahashi, A., Hocini, M., et al. (1997). Three-dimensional mapping of the common atrial flutter circuit in the right atrium. Circulation, 96, 3904–3912.

    PubMed  CAS  Google Scholar 

  4. Pappone, C., Oreto, G., Lamberti, F., Vicedomini, G., Loricchio, M. L., Shpun, S., et al. (1999). Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation, 100, 1203–1208.

    PubMed  CAS  Google Scholar 

  5. Kornowski, R., & Leon, M. B. (1999). Left ventricular electromechanical mapping: Current understanding and diagnostic potential. Catheterization and Cardiovascular Interventions, 48, 421–429.

    Article  PubMed  CAS  Google Scholar 

  6. Leon, M. B., Kornowski, R., Downey, W. E., Weisz, G., Baim, D. S., Bonow, R. O., et al. (2005). A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. Journal of the American College of Cardiology, 46, 1812–1819.

    Article  PubMed  Google Scholar 

  7. Vale, P. R., Losordo, D. W., Milliken, C. E., Maysky, M., Esakof, D. D., Symes, J. F., et al. (2000). Left ventricular electromechanical mapping to assess efficacy of Phvegf(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation, 102, 965–974.

    PubMed  CAS  Google Scholar 

  8. Sherman, W., Martens, T. P., Viles-Gonzalez, J. F., & Siminiak, T. (2006). Catheter-based delivery of cells to the heart. Nature Clinical Practice, 3(Suppl 1), S57–S64.

    Article  PubMed  Google Scholar 

  9. Gepstein, L., Hayam, G., Shpun, S., & Ben-Haim, S. A. (1997). Hemodynamic evaluation of the heart with a nonfluoroscopic electromechanical mapping technique. Circulation, 96, 3672–3680.

    PubMed  CAS  Google Scholar 

  10. Kornowski, R., Hong, M. K., Gepstein, L., Goldstein, S., Ellahham, S., Ben-Haim, S. A., et al. (1998). Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation, 98, 1116–1124.

    PubMed  CAS  Google Scholar 

  11. Gepstein, L., Hayam, G., & Ben-Haim, S. A. (1997). A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation, 95, 1611–1622.

    PubMed  CAS  Google Scholar 

  12. Smeets, J. L., Ben-Haim, S. A., Rodriguez, L. M., Timmermans, C., & Wellens, H. J. (1998). New method for nonfluoroscopic endocardial mapping in humans: Accuracy assessment and first clinical results. Circulation, 97, 2426–2432.

    PubMed  CAS  Google Scholar 

  13. Schnittger, I., Fitzgerald, P. J., Daughters, G. T., Ingels, N. B., Kantrowitz, N. E., Schwarzkopf, A., et al. (1982). Limitations of comparing left ventricular volumes by two dimensional echocardiography, myocardial markers and cineangiography. The American Journal of Cardiology, 50, 512–519.

    Article  PubMed  CAS  Google Scholar 

  14. Gopal, A. S., Keller, A. M., Rigling, R., King Jr., D. L., & King, D. L. (1993). Left ventricular volume and endocardial surface area by three-dimensional echocardiography: Comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. Journal of the American College of Cardiology, 22, 258–270.

    Article  PubMed  CAS  Google Scholar 

  15. Gopal, A. S., Shen, Z., Sapin, P. M., Keller, A. M., Schnellbaecher, M. J., Leibowitz, D. W., et al. (1995). Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation, 92, 842–853.

    PubMed  CAS  Google Scholar 

  16. Van Langenhove, G., Hamburger, J. N., Smits, P. C., Albertal, M., Onderwater, E., Kay, I. P., et al. (2000). Evaluation of left ventricular volumes and ejection fraction with a nonfluoroscopic endoventricular three-dimensional mapping technique. American Heart Journal, 140, 596–602.

    Article  PubMed  Google Scholar 

  17. Sarmento-Leite, R., Silva, G. V., Dohman, H. F., Rocha, R. M., Dohman, H. J., de Mattos, N. D., et al. (2003). Comparison of left ventricular electromechanical mapping and left ventricular angiography: Defining practical standards for analysis of Noga maps. Texas Heart Institute Journal, 30, 19–26.

    PubMed  Google Scholar 

  18. Gepstein, L., Goldin, A., Lessick, J., Hayam, G., Shpun, S., Schwartz, Y., et al. (1998). Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation, 98, 2055–2064.

    PubMed  CAS  Google Scholar 

  19. Callans, D. J., Ren, J. F., Michele, J., Marchlinski, F. E., & Dillon, S. M. (1999). Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation, 100, 1744–1750.

    PubMed  CAS  Google Scholar 

  20. Fuchs, S., Kornowski, R., Shiran, A., Pierre, A., Ellahham, S., & Leon, M. B. (1999). Electromechanical characterization of myocardial hibernation in a pig model. Coronary Artery Disease, 10, 195–198.

    Article  PubMed  CAS  Google Scholar 

  21. Wolf, T., Gepstein, L., Dror, U., Hayam, G., Shofti, R., Zaretzky, A., et al. (2001). Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. Journal of the American College of Cardiology, 37, 1590–1597.

    Article  PubMed  CAS  Google Scholar 

  22. Thambar, S. T., Schofield, L., Poppas, A., Bouchard, M., Williams, D. O., & Johnson, L. L. (2003). Validation of R wave voltage endomyocardial mapping to assess myocardial fibrosis: Comparison with thallium and dobutamine echocardiography in a swine model. Journal of Interventional Cardiology, 16, 23–31.

    Article  PubMed  Google Scholar 

  23. Kornowski, R., Hong, M. K., & Leon, M. B. (1998). Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation, 98, 1837–1841.

    PubMed  CAS  Google Scholar 

  24. Botker, H. E., Lassen, J. F., Hermansen, F., Wiggers, H., Sogaard, P., Kim, W. Y., et al. (2001). Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation, 103, 1631–1637.

    PubMed  CAS  Google Scholar 

  25. Keck, A., Hertting, K., Schwartz, Y., Kitzing, R., Weber, M., Leisner, B., et al. (2002). Electromechanical mapping for determination of myocardial contractility and viability. A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. Journal of the American College of Cardiology, 40, 1067–1074 discussion 1075–1068.

    Article  PubMed  Google Scholar 

  26. Wolf, T., Gepstein, L., Hayam, G., Zaretzky, A., Shofty, R., Kirshenbaum, D., et al. (2001). Three-dimensional endocardial impedance mapping: A new approach for myocardial infarction assessment. American Journal of Physiology, 280, H179–H188.

    PubMed  CAS  Google Scholar 

  27. Odenstedt, J., Mansson, C., Jansson, S. O., & Grip, L. (2003). Endocardial electromechanical mapping in a porcine acute infarct and reperfusion model evaluating the extent of myocardial ischemia. The Journal of Invasive Cardiology, 15, 497–501.

    PubMed  Google Scholar 

  28. Fallavollita, J. A., Valeti, U., Oza, S., & Canty Jr., J. M. (2004). Spatial heterogeneity of endocardial voltage amplitude in viable, chronically dysfunctional myocardium. Basic Research in Cardiology, 99, 212–222.

    Article  PubMed  Google Scholar 

  29. Allman, K. C., Shaw, L. J., Hachamovitch, R., & Udelson, J. E. (2002). Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: A meta-analysis. Journal of the American College of Cardiology, 39, 1151–1158.

    Article  PubMed  Google Scholar 

  30. Perin, E. C., Silva, G. V., Sarmento-Leite, R., Sousa, A. L., Howell, M., Muthupillai, R., et al. (2002). Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: Validation by delayed-enhancement magnetic resonance imaging. Circulation, 106, 957–961.

    Article  PubMed  Google Scholar 

  31. Rizzello, V., Poldermans, D., & Bax, J. J. (2005). Assessment of myocardial viability in chronic ischemic heart disease: Current status. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 49, 81–96.

    PubMed  CAS  Google Scholar 

  32. Fuchs, S., Hendel, R. C., Baim, D. S., Moses, J. W., Pierre, A., Laham, R. J., et al. (2001). Comparison of endocardial electromechanical mapping with radionuclide perfusion imaging to assess myocardial viability and severity of myocardial ischemia in angina pectoris. The American Journal of Cardiology, 87, 874–880.

    Article  PubMed  CAS  Google Scholar 

  33. Poppas, A., Sheehan, F. H., Reisman, M., Harms, V., & Kornowski, R. (2004). Validation of viability assessment by electromechanical mapping by three-dimensional reconstruction with dobutamine stress echocardiography in patients with coronary artery disease. The American Journal of Cardiology, 93, 1097–1101.

    Article  PubMed  Google Scholar 

  34. Graf, S., Gyongyosi, M., Khorsand, A., Nekolla, S. G., Pirich, C., Kletter, K., et al. (2004). Electromechanical properties of perfusion/metabolism mismatch: Comparison of nonfluoroscopic electroanatomic mapping with 18f-Fdg Pet. Journal of Nuclear Medicine, 45, 1611–1618.

    PubMed  Google Scholar 

  35. Koch, K. C., vom Dahl, J., Wenderdel, M., Nowak, B., Schaefer, W. M., Sasse, A., et al. (2001). Myocardial viability assessment by endocardial electroanatomic mapping: Comparison with metabolic imaging and functional recovery after coronary revascularization. Journal of the American College of Cardiology, 38, 91–98.

    Article  PubMed  CAS  Google Scholar 

  36. Gyongyosi, M., Sochor, H., Khorsand, A., Gepstein, L., & Glogar, D. (2001). Online myocardial viability assessment in the catheterization laboratory via NOGA electroanatomic mapping: Quantitative comparison with thallium-201 uptake. Circulation, 104, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  37. Samady, H., Liu, Y. H., Choi, C. J., Ragosta, M., Pfau, S. E., Cleman, M. W., et al. (2003). Electromechanical mapping for detecting myocardial viability and ischemia in patients with severe ischemic cardiomyopathy. The American Journal of Cardiology, 91, 807–811.

    Article  PubMed  Google Scholar 

  38. Maes, A., Flameng, W., Nuyts, J., Borgers, M., Shivalkar, B., Ausma, J., et al. (1994). Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation, 90, 735–745.

    PubMed  CAS  Google Scholar 

  39. Depre, C., Vanoverschelde, J. L., Melin, J. A., Borgers, M., Bol, A., Ausma, J., et al. (1995). Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. The American Journal of Physiology, 268, H1265–H1275.

    PubMed  CAS  Google Scholar 

  40. Perin, E. C., Silva, G. V., Sarmento-Leite, R., Vaughn, W. K., Fish, R. D., & Ferguson 3rd, J. J. (2002). Left ventricular electromechanical mapping: Preliminary evidence of electromechanical changes after successful coronary intervention. American Heart Journal, 144, 693–701.

    PubMed  Google Scholar 

  41. Koch, K. C., Wenderdel, M., Stellbrink, C., Hanrath, P., & vom Dahl, J. (2001). Electromechanical assessment of left ventricular function following successful percutaneous coronary revascularization. Catheterization and Cardiovascular Interventions, 54, 466–472.

    Article  PubMed  CAS  Google Scholar 

  42. Jorgensen, E., Madsen, T., & Kastrup, J. (2005). Comparison of the left ventricular electromechanical map before percutaneous coronary stent revascularization and at one-month follow-up in patients with a recent ST elevation infarction. Catheterization and Cardiovascular Interventions, 64, 153–159.

    Article  PubMed  Google Scholar 

  43. Wiggers, H., Botker, H. E., Sogaard, P., Kaltoft, A., Hermansen, F., Kim, W. Y., et al. (2003). Electromechanical mapping versus positron emission tomography and single photon emission computed tomography for the detection of myocardial viability in patients with ischemic cardiomyopathy. Journal of the American College of Cardiology, 41, 843–848.

    Article  PubMed  Google Scholar 

  44. Koch, K. C., vom Dahl, J., Schaefer, W. M., Nowak, B., Kapan, S., & Hanrath, P. (2004). Prognostic value of endocardial electromechanical mapping in patients with left ventricular dysfunction undergoing percutaneous coronary intervention. The American Journal of Cardiology, 94, 1129–1133.

    Article  PubMed  Google Scholar 

  45. Kornowski, R., Bhargava, B., & Leon, M. B. (1999). Percutaneous transmyocardial laser revascularization: An overview. Catheterization and Cardiovascular Interventions, 47, 354–359.

    Article  PubMed  CAS  Google Scholar 

  46. Cooley, D. A., Frazier, O. H., Kadipasaoglu, K. A., Lindenmeir, M. H., Pehlivanoglu, S., Kolff, J. W., et al. (1996). Transmyocardial laser revascularization: Clinical experience with twelve-month follow-up. The Journal of Thoracic and Cardiovascular Surgery, 111, 791–797 discussion 797–799.

    Article  PubMed  CAS  Google Scholar 

  47. Laham, R. J., & Baim, D. S. (2001). Combined percutaneous biosense-guided laser myocardial revascularization and coronary intervention. Catheterization and Cardiovascular Interventions, 53, 235–240.

    Article  PubMed  CAS  Google Scholar 

  48. Fuchs, S., Baffour, R., Shou, M., Stabile, E., Singh, S., Schwartz, B., et al. (2001). Could plasmid-mediated gene transfer into the myocardium be augmented by left ventricular guided laser myocardial injury? Catheterization and Cardiovascular Interventions, 54, 533–538.

    Article  PubMed  CAS  Google Scholar 

  49. Patel, A. N., Spadaccio, C., Kuzman, M., Park, E., Fischer, D. W., Stice, S. L., et al. (2007). Improved cell survival in infarcted myocardium using a novel combination transmyocardial laser and cell delivery system. Cell Transplantation, 16, 899–905.

    Article  PubMed  Google Scholar 

  50. Kornowski, R., Baim, D. S., Moses, J. W., Hong, M. K., Laham, R. J., Fuchs, S., et al. (2000). Short- and intermediate-term clinical outcomes from direct myocardial laser revascularization guided by biosense left ventricular electromechanical mapping. Circulation, 102, 1120–1125.

    PubMed  CAS  Google Scholar 

  51. Van Langenhove, G., Regar, E., Foley, D. P., Hamburger, J. N., Smits, P. C., Albertal, M., et al. (2000). Acute changes of global and regional left ventricular function immediately after direct myocardial revascularization. Seminars in Interventional Cardiology, 5, 103–106.

    PubMed  Google Scholar 

  52. Oesterle, S. N., Sanborn, T. A., Ali, N., Resar, J., Ramee, S. R., Heuser, R., et al. (2000). Percutaneous transmyocardial laser revascularisation for severe angina: The Pacific Randomised Trial. Potential class improvement from intramyocardial channels. Lancet, 356, 1705–1710.

    Article  PubMed  CAS  Google Scholar 

  53. Stone, G. W., Teirstein, P. S., Rubenstein, R., Schmidt, D., Whitlow, P. L., Kosinski, E. J., et al. (2002). A prospective, multicenter, randomized trial of percutaneous transmyocardial laser revascularization in patients with nonrecanalizable chronic total occlusions. Journal of the American College of Cardiology, 39, 1581–1587.

    Article  PubMed  Google Scholar 

  54. Whitlow, P. L., DeMaio Jr., S. J., Perin, E. C., O'Neill, W. W., Lasala, J. M., Schneider, J. E., et al. (2003). One-year results of percutaneous myocardial revascularization for refractory angina pectoris. The American Journal of Cardiology, 91, 1342–1346.

    Article  PubMed  Google Scholar 

  55. Salem, M., Rotevatn, S., Stavnes, S., Brekke, M., Vollset, S. E., & Nordrehaug, J. E. (2004). Usefulness and safety of percutaneous myocardial laser revascularization for refractory angina pectoris. The American Journal of Cardiology, 93, 1086–1091.

    Article  PubMed  Google Scholar 

  56. Vale, P. R., Losordo, D. W., Milliken, C. E., McDonald, M. C., Gravelin, L. M., Curry, C. M., et al. (2001). Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation, 103, 2138–2143.

    PubMed  CAS  Google Scholar 

  57. Losordo, D. W., Vale, P. R., Hendel, R. C., Milliken, C. E., Fortuin, F. D., Cummings, N., et al. (2002). Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation, 105, 2012–2018.

    Article  PubMed  CAS  Google Scholar 

  58. Fuchs, S., Dib, N., Cohen, B. M., Okubagzi, P., Diethrich, E. B., Campbell, A., et al. (2006). A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of Advegf121 in patients with refractory advanced coronary artery disease. Catheterization and Cardiovascular Interventions, 68, 372–378.

    Article  PubMed  Google Scholar 

  59. Krause, K. T., Jaquet, K., Geidel, S., Schneider, C., Mandel, C., Stoll, H. P., et al. (2006). Percutaneous endocardial injection of erythropoietin: Assessment of cardioprotection by electromechanical mapping. European Journal of Heart Failure, 8, 443–450.

    Article  PubMed  CAS  Google Scholar 

  60. Fuchs, S., Baffour, R., Zhou, Y. F., Shou, M., Pierre, A., Tio, F. O., et al. (2001). Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. Journal of the American College of Cardiology, 37, 1726–1732.

    Article  PubMed  CAS  Google Scholar 

  61. Tse, H. F., Kwong, Y. L., Chan, J. K., Lo, G., Ho, C. L., & Lau, C. P. (2003). Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 361, 47–49.

    Article  PubMed  Google Scholar 

  62. Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Silva, G. V., et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110, II213–II218.

    Article  PubMed  Google Scholar 

  63. Fuchs, S., Kornowski, R., Weisz, G., Satler, L. F., Smits, P. C., Okubagzi, P., et al. (2006). Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. The American Journal of Cardiology, 97, 823–829.

    Article  PubMed  Google Scholar 

  64. Vale, P. R., Losordo, D. W., Tkebuchava, T., Chen, D., Milliken, C. E., & Isner, J. M. (1999). Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. Journal of the American College of Cardiology, 34, 246–254.

    Article  PubMed  CAS  Google Scholar 

  65. Kornowski, R., Leon, M. B., Fuchs, S., Vodovotz, Y., Flynn, M. A., Gordon, D. A., et al. (2000). Electromagnetic guidance for catheter-based transendocardial injection: A platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. Journal of the American College of Cardiology, 35, 1031–1039.

    Article  PubMed  CAS  Google Scholar 

  66. Smits, P. C., van Langenhove, G., Schaar, M., Reijs, A., Bakker, W. H., van der Giessen, W. J., et al. (2002). Efficacy of percutaneous intramyocardial injections using a nonfluoroscopic 3-D mapping based catheter system. Cardiovascular Drugs and Therapy, 16, 527–533.

    Article  PubMed  CAS  Google Scholar 

  67. Kastrup, J., Jorgensen, E., Ruck, A., Tagil, K., Glogar, D., Ruzyllo, W., et al. (2005). Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris a randomized double-blind placebo-controlled study: The Euroinject One Trial. Journal of the American College of Cardiology, 45, 982–988.

    Article  PubMed  CAS  Google Scholar 

  68. Baldazzi, F., Jorgensen, E., Ripa, R. S., & Kastrup, J. (2008). Release of biomarkers of myocardial damage after direct intramyocardial injection of genes and stem cells via the percutaneous transluminal route. European Heart Journal, 29, 1819–1826.

    Article  PubMed  CAS  Google Scholar 

  69. Assmus, B., Honold, J., Schachinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. New England Journal of Medicine, 355, 1222–1232.

    Article  PubMed  CAS  Google Scholar 

  70. Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., Price, E. T., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: Implications for current clinical trials. Circulation, 112, I150–156.

    PubMed  Google Scholar 

  71. Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., et al. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27, 1114–1122.

    Article  PubMed  Google Scholar 

  72. Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., & Kittleson, M. D. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363, 783–784.

    Article  PubMed  Google Scholar 

  73. Perin, E. C., Silva, G. V., Assad, J. A., Vela, D., Buja, L. M., Sousa, A. L., et al. (2008). Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44, 486–495.

    Article  PubMed  CAS  Google Scholar 

  74. Nyolczas, N., Gyongyosi, M., Beran, G., Dettke, M., Graf, S., Sochor, H., et al. (2007). Design and rationale for the myocardial stem cell administration after acute myocardial infarction (Mystar) study: A multicenter, prospective, randomized, single-blind trial comparing early and late intracoronary or combined (percutaneous intramyocardial and intracoronary) administration of nonselected autologous bone marrow cells to patients after acute myocardial infarction. American Heart Journal, 153, 212.e1–e7.

    Article  Google Scholar 

  75. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479.

    Article  PubMed  CAS  Google Scholar 

  76. Dib, N., Diethrich, E. B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al. (2002). Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. Journal of Endovascular Therapy, 9, 313–319.

    Article  PubMed  Google Scholar 

  77. Smits, P. C., van Geuns, R. J., Poldermans, D., Bountioukos, M., Onderwater, E. E., Lee, C. H., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: Clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42, 2063–2069.

    Article  PubMed  Google Scholar 

  78. Biagini, E., Valgimigli, M., Smits, P. C., Poldermans, D., Schinkel, A. F., Rizzello, V., et al. (2006). Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure. European Journal of Heart Failure, 8, 641–648.

    Article  PubMed  Google Scholar 

  79. Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V., Durgin, M., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: A phase I/IIa double-blind, randomized controlled trial. Circulation, 115, 3165–3172.

    Article  PubMed  Google Scholar 

  80. Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111, 150–156.

    Article  PubMed  CAS  Google Scholar 

  81. Tse, H. F., Thambar, S., Kwong, Y. L., Rowlings, P., Bellamy, G., McCrohon, J., et al. (2006). Safety of catheter-based intramyocardial autologous bone marrow cells implantation for therapeutic angiogenesis. The American Journal of Cardiology, 98, 60–62.

    Article  PubMed  Google Scholar 

  82. Chazaud, B., Hittinger, L., Sonnet, C., Champagne, S., Le Corvoisier, P., Benhaiem-Sigaux, N., et al. (2003). Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovascular Research, 58, 444–450.

    Article  PubMed  CAS  Google Scholar 

  83. Opie, S. R., & Dib, N. (2006). Surgical and catheter delivery of autologous myoblasts in patients with congestive heart failure. Nature Clinical Practice, 3(Suppl 1), S42–S45.

    Article  PubMed  Google Scholar 

  84. Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Mesquita, C. T., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107, 2294–2302.

    Article  PubMed  Google Scholar 

  85. Chen, S. L., Fang, W. W., Ye, F., Liu, Y. H., Qian, J., Shan, S. J., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American Journal of Cardiology, 94, 92–95.

    Article  PubMed  Google Scholar 

  86. Bolotin, G., Wolf, T., van der Veen, F. H., Shachner, R., Sazbon, Y., Reisfeld, D., et al. (2001). Three-dimensional electromechanical mapping: Imaging in the operating room of the future. The Annals of Thoracic Surgery, 72, S1083–S1089.

    Article  PubMed  CAS  Google Scholar 

  87. Ota, T., Gilbert, T. W., Badylak, S. F., Schwartzman, D., & Zenati, M. A. (2007). Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix. The Journal of Thoracic and Cardiovascular Surgery, 133, 979–985.

    Article  PubMed  Google Scholar 

  88. Klemm, H. U., Ventura, R., Franzen, O., Baldus, S., Mortensen, K., Risius, T., et al. (2006). Simultaneous mapping of activation and motion timing in the healthy and chronically ischemic heart. Heart Rhythm, 3, 781–788.

    Article  PubMed  Google Scholar 

  89. Dickfeld, T., Calkins, H., Zviman, M., Kato, R., Meininger, G., Lickfett, L., et al. (2003). Anatomic stereotactic catheter ablation on three-dimensional magnetic resonance images in real time. Circulation, 108, 2407–2413.

    Article  PubMed  Google Scholar 

  90. Perin, E. C., Silva, G. V., Fernandes, M. R., Munger, T., Pandey, A., Sehra, R., et al. (2007). First experience with remote left ventricular mapping and transendocardial cell injection with a novel integrated magnetic navigation-guided electromechanical mapping system. Eurointervention, 3, 142–148.

    PubMed  Google Scholar 

  91. Seth, S., Narang, R., Bhargava, B., Ray, R., Mohanty, S., Gulati, G., et al. (2006). Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: Clinical and histopathological results: The First-in-Man ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial. Journal of the American College of Cardiology, 48, 2350–2351.

    Article  PubMed  Google Scholar 

  92. Ohnishi, S., Yanagawa, B., Tanaka, K., Miyahara, Y., Obata, H., Kataoka, M., et al. (2007). Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. Journal of Molecular and Cellular Cardiology, 42, 88–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Troy Jantzen (Biosense Webster, Johnson & Johnson Medical) and Mr. Jonathan Wong (Biologics Delivery Systems Group, Cordis Corporation) for their assistance during the writing of this manuscript, along with Dr. Emerson Perin and Mr. Fred Baimbridge (Texas Heart Institute, Houston, Texas) for kindly providing the images in Fig. 3. Dr. Psaltis and Professor Worthley have no financial conflicts to report. Dr. Psaltis is supported by post-graduate research scholarships from the National Health and Medical Research Council and National Heart Foundation of Australia and the Royal Adelaide Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Worthley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psaltis, P.J., Worthley, S.G. Endoventricular Electromechanical Mapping—The Diagnostic and Therapeutic Utility of the NOGA® XP Cardiac Navigation System. J. of Cardiovasc. Trans. Res. 2, 48–62 (2009). https://doi.org/10.1007/s12265-008-9080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-008-9080-7

Keywords

Navigation