Skip to main content
Log in

Isolation and characterization of the new Klebsiella pneumoniae J2B strain showing improved growth characteristics with reduced lipopolysaccharide formation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is a suitable biocatalyst for the production of 1,3-propanediol (1,3-PDO) and 3-hydroxypropionic acid (3-HP) from glycerol. However, its commercial applications have been impeded due to its poor growth characteristics and the excessive production of lipopolysaccharide (LPS). To overcome these limitations, a new K. pneumoniae J2B (KpJ2B) strain was isolated from municipal waste anaerobic digester samples. The shake flask cultivation of this new strain under aerobic conditions showed a specific growth rate of 0.92/h, which is 1.13 times higher than that achieved using the well studied K. pneumoniae DSMZ2026 (KpDSMZ). When the new strain was grown in a bioreactor under aerobic conditions using a fed-batch mode for 36 h, the biomass concentration (4.03 g/L CDW) and productivity (0.15 g/L/h) were almost 2.2 times higher than the corresponding values with KpDSMZ. Growth was accompanied by the production of 1,3-PDO (186 mM), lactic acid (235 mM), ethanol (170 mM), and acetic acid (92.2 mM) at significant levels, indicating the resistance of the strain to the inhibitory effects of these metabolites. A comparison of the SEM images and 2-keto-3-deoxyoctonate content (KpJ2B, 1.4 μg/g CDW; KpDSMZ, 1.9 μg/g CDW) confirmed the lower LPS content in the KpJ2B strain. Furthermore, this new isolate exhibited higher sensitivity towards a range of antibiotics and better sedimentation properties than the KpDSMZ strain. This suggests that KpJ2B is an attractive strain for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yazdani, S. S. and R. Gonzalez (2007) Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213–219.

    Article  CAS  Google Scholar 

  2. Seifert, C., S. Bowien, G. Gottschalk, and R. Daniel (2001) Identification and expression of the genes and purification and characterization of the genes products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur. J. Biochem. 268: 2369–2378.

    Article  CAS  Google Scholar 

  3. Hu, Z.-C., Y.-G. Zheng, and Y.-C. Shen (2010) Dissolved-oxygen-stat fed-batch fermentation of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. Biotechnol. Bioprocess Eng. 15: 651–656.

    Article  CAS  Google Scholar 

  4. Biebl, H., H. Menze, A. P. Zeng, and W. D. Deckwer (1999) Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52: 289–297.

    Article  CAS  Google Scholar 

  5. Barbirato, F. and A. Bories (1997) Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res. Microbiol. 148: 475–484.

    Article  CAS  Google Scholar 

  6. Ito, T., Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100: 260–265.

    Article  CAS  Google Scholar 

  7. Postgate, J. (1998) Nitrogen fixation. 3rd edition. Cambridge University Press.

  8. Ryan, K. (2004) Plague and other bacterial zoonotic diseases. pp. 481–491. In: J. C. Sherris, K. J. Ryan, and C. G. Ray (eds.). Medical microbiology: An Introduction to Infectious Diseases. 4th Edition. McGraw-Hill, USA.

    Google Scholar 

  9. Zhu, M. M., P. D. Lawman, and D. C. Cameron (2002) Improving 1.3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of snglycerol-3-phosphate. Biotechnol. Prog. 18: 694–699.

    Article  CAS  Google Scholar 

  10. Raj, S. M., C. Rathnasingh, J. Woochel, E. Selvakumar, and S. Park (2010) A novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol. Bioprocess Eng. 15: 131–138.

    Article  CAS  Google Scholar 

  11. Jian-Guo, Z., J. Xiao-Jun, H. Huang, J. Du, S. Li, and Y. Y. Ding (2009) Production of 3-hydroxypropionic acid by recombinant Klebsiella pneumoniae based on aeration and ORP controlled strategy. Kor. J. Chem. Eng. 26: 1679–1685.

    Article  Google Scholar 

  12. Somasundar, A., M. R. Subramanian, R. Chelladurai, and S. Park (2011) Development of recombinant Klebsiella pneumoniaee ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl. Microbiol. Biotechnol. 90: 1253–1265.

    Article  Google Scholar 

  13. Rathnasingh, C., S. M. Raj, J. E. Jo, and S. Park (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol. Bioeng. 104: 729–739.

    CAS  Google Scholar 

  14. Evrard, B., D. Balestrino, A. Dosgilbert, B. Gachancard, N. Charbonnel, C. Forestier, and A. Tridon (2010) Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumoniaee. Infect. Immun. 78: 210–219.

    Article  CAS  Google Scholar 

  15. Raj, S. M., C. Rathnasingh, J. E. Jo, and S. Park (2008) Production of 3 hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Proc. Biochem. 43: 1440–1446.

    Article  CAS  Google Scholar 

  16. Ahrens, K., K. Menzel, and W. Deckwer (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniaee in anaerobic continuous culture: III. Enzymesand fluxes of glycerol dissimilation and 1, 3-propanediol formation. Biotechnol. Bioeng. 59: 544–552.

    Article  CAS  Google Scholar 

  17. Perez, J. M., F. A. Arenas, G. A. Pradenas, J. M. Sandoval, and C. C. Vasquez (2008) Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J. Biol. Chem. 283: 7346–7353.

    Article  CAS  Google Scholar 

  18. Richard, P., E. Darveau, and W. Hancock (1983) Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155: 831–838.

    Google Scholar 

  19. Bauer, A. W., W. M. M. Kirby, J. C. Sherris, and M. Turck (1966) Antibiotic susceptibility testing by a standardized single disk method. Ame. J. Clin. Pathol 45: 493–496.

    CAS  Google Scholar 

  20. Bradford, M. M. (1976) A rapid and sensitive for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  21. Brabetz, W., B. Lindner, and H. Brade (2000) Comparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12. Eur. J. Biochem. 267: 5458–5465.

    Article  CAS  Google Scholar 

  22. Nickel, J. C., I. Ruseska, J. B. Wright, and J. W. Costerton (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Ch. 27: 619–624.

    CAS  Google Scholar 

  23. Hoyle, B. D., J. Alcantara, and J. W. Costerton (1992) Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob. Agents Ch. 36: 2054–2056.

    CAS  Google Scholar 

  24. Zhang, Q. R. and Z. L. Xiu (2009) Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnol. Prog. 25: 103–115.

    Article  Google Scholar 

  25. Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen (1998) Metabolic engineering: Principles and methodologies. Academic Press, San Diego, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arasu, M.V., Kumar, V., Ashok, S. et al. Isolation and characterization of the new Klebsiella pneumoniae J2B strain showing improved growth characteristics with reduced lipopolysaccharide formation. Biotechnol Bioproc E 16, 1134–1143 (2011). https://doi.org/10.1007/s12257-011-0513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0513-9

Keywords

Navigation