Skip to main content

Advertisement

Log in

Application of the QbD Approach in the Development of a Liposomal Formulation with EGCG

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to develop liposomes loaded with (-)- epigallocatechin gallate (EGCG) by using the Quality by Design (QbD) approach.

Methods

The risk assessment tools (Ishikawa diagram and Risk Estimation Matrix) highlighted three formulation factors, namely phospholipid concentration, phospholipid to cholesterol molar ratio and EGCG concentration that are likely to influence the critical quality attributes (CQAs) of the EGCG containing liposomes and thus were studied through a D-optimal experimental design.

Results

The results revealed that all three formulation factors presented a great influence on liposomes CQAs. High concentrations of EGCG and cholesterol were observed to increase the encapsulation of EGCG into liposomes at low values of the phospholipid concentration. On the other hand, high concentrations of EGCG increased liposomal size and zeta potential values. The optimal formulation featured an entrapped drug concentration of 221.9 µg/ml, corresponding to an encapsulation efficiency of 69.2%, while the liposomal size was 175.2 nm. The release profile illustrated a prolonged release of EGCG from the optimal formulation on a period of 72 h, with a total percentage released of 56%. The in vitro studies performed on dental follicle (DF) mesenchymal stem cells and periodontal ligament (PDL) mesenchymal stem cells showed that EGCG exert its antioxidant effect on DF but not on PDL.

Conclusion

The application of the QbD concept in the development of EGCG loaded liposomes improved the understanding of the manufacturing process as well as the influence of the formulation factors on the quality attributes of liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int. 2017;2017.

  2. Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2019;11(1):39.

    Article  Google Scholar 

  3. Chu C, Deng J, Man Y, Qu Y. Green tea extracts epigallocatechin-3-gallate for different treatments. Biomed Res Int. 2017;2017.

  4. Taleghani F, Rezvani G, Birjandi M, Valizadeh M. Impact of green tea intake on clinical improvement in chronic periodontitis: a randomized clinical trial. J Stomatol Oral Maxillofac Surg. 2018;119(5):365–8.

    Article  CAS  PubMed  Google Scholar 

  5. Aksakalli S. Antioxidants in dentistry: review of literature. Dentistry. 2013;04(01):1–3.

    Article  Google Scholar 

  6. Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem. 2016;37:1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, et al. Bioavailability of tea catechins and its improvement. Molecules. 2018;23(9):10–3.

    Article  Google Scholar 

  8. Zou LQ, Peng SF, Liu W, Gan L, Liu WL, Liang RH, et al. Improved in vitro digestion stability of (-)-epigallocatechin gallate through nanoliposome encapsulation. Food Res Int. 2014;64:492–9.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Cai W, Zhen T, Ji N, Dai L, Xiong L, et al. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. Int J Biol Macromol. 2020;161:481–91.

    Article  CAS  PubMed  Google Scholar 

  10. Huang TW, Ho YC, Tsai TN, Tseng CL, Lin C, Mi FL. Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydr Polym. 2020;242(April):116312.

    Article  CAS  PubMed  Google Scholar 

  11. Baranei M, Taheri RA, Tirgar M, Saeidi A, Oroojalian F, Uzun L, et al. Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines. Mater Today Commun. 2020;(October):101751.

  12. Kuo YC, Wang IH, Rajesh R. Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson’s disease therapy. Acta Biomater. 2021;119:360–74.

    Article  CAS  PubMed  Google Scholar 

  13. Minnelli C, Moretti P, Fulgenzi G, Mariani P, Laudadio E, Armeni T, et al. A Poloxamer-407 modified liposome encapsulating epigallocatechin-3-gallate in the presence of magnesium: Characterization and protective effect against oxidative damage. Int J Pharm. 2018;552(1–2):225–34.

    Article  CAS  PubMed  Google Scholar 

  14. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research. Guidance for industry: liposome drug products: chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. Pharm Qual. 2018;(August):1–15.

  15. Bulboacă AE, Porfire A, Barbălată C, Bolboacă SD, Nicula C, Boarescu PM, et al. The effect of liposomal epigallocatechin gallate and metoclopramide hydrochloride co-administration on experimental migraine. Farmacia. 2019;67(5):905–11.

    Article  Google Scholar 

  16. Bulboaca AE, Boarescu PM, Porfire AS, Dogaru G, Barbalata C, Valeanu M, et al. The effect of nano-epigallocatechin-gallate on oxidative stress and matrix metalloproteinases in experimental diabetes mellitus. Antioxidants. 2020;9(2):172.

    Article  CAS  PubMed Central  Google Scholar 

  17. Nguyen S, Hiorth M, Rykke M, Smistad G. The potential of liposomes as dental drug delivery systems. Eur J Pharm Biopharm. 2011;77(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  18. Altamimi MA, Hussain A, Imam SS, Alshehri S, Singh SK, Webster TJ. Transdermal delivery of isoniazid loaded elastic liposomes to control cutaneous and systemic tuberculosis. J Drug Deliv Sci Technol. 2020;59(June):101848.

    Article  CAS  Google Scholar 

  19. Shakeel K, Raisuddin S, Ali S, Imam SS, Rahman MA, Jain GK, et al. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J Liposome Res. 2019;29(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  20. ICH. Ich Harmonised Tripartite Guideline, Pharmaceutical Development Q8(R2). ICH Harmon Tripart Guidel. 2009;8(August):1–28.

  21. Zhang L, Mao S. Application of quality by design in the current drug development. Asian J Pharm Sci. 2017;12(1):1–8.

    Article  PubMed  Google Scholar 

  22. Rajeshwari HR, Dhamecha D, Jagwani S, Rao M, Jadhav K, Shaikh S, et al. Local drug delivery systems in the management of periodontitis: A scientific review. J Control Release. 2019;307(June):393–409.

    Google Scholar 

  23. Porfire A, Achim M, Barbalata C, Rus I, Tomuta I, Cristea C. Pharmaceutical development of liposomes using the QbD approach. In: Liposomes—advances and perspectives. Intech Open: 2019.

  24. Kumar L, Sreenivasa Reddy M, Managuli RS, Pai KG. Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm J. 2015;23(5):549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Achim M, Tomuță I, Muntean D, Porfire A, Tefas LR, Patras L, et al. Optimization and in vitro evaluation of 5-fluorouracil – loaded long – circulating liposomes. Farmacia. 2017;65(1):82–91.

    CAS  Google Scholar 

  26. Fang JY, Lee WR, Shen SC, Huang YL. Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. J Dermatol Sci. 2006;42(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  27. Postescu ID, Tatomir C, Chereches G, Brie I, Damian G, Petrisor D, et al. Spectroscopic characterization of some grape extracts with potential role in tumor growth inhibition. J Optoelectron Adv Mater. 2007;9(3):564–7.

    Google Scholar 

  28. Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, Vulpoi A, et al. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol. 2015;15(1):1–18.

    Article  Google Scholar 

  29. Boşca AB, Soriţău O, Ilea A, Moga M, Cenariu M, Câmpian RS, et al. Effect of curcumin and epigallocatechin-3- gallate on stem cells derived from human periodontium. Ann Rom Soc Cell Biol. 2015;19(3):83–94.

    Google Scholar 

  30. Beg S, Rahman M, Kohli K. Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products. Drug Discov Today. 2019;24(3):717–25.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Q, Chiang H, Portocarrero C, Zhu Y, Hill S, Heppert K, et al. Investigating the stability of EGCg in aqueous media. Am Chem Soc (ACS). 2003;20(3):83–6.

    CAS  Google Scholar 

  32. Legeay S, Rodier M, Fillon L, Faure S, Clere N. Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome. Nutrients. 2015;7(7):5443–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry. 2006;67(17):1849–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bozzuto G. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, et al. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J. 2010;1(1):164–209.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sylvester B, Porfire A, Muntean DM, Vlase L, Lupuţ L, Licarete E, et al. Optimization of prednisolone-loaded long-circulating liposomes via application of Quality by Design (QbD) approach. J Liposome Res. 2018;28(1):49–61.

    Article  CAS  PubMed  Google Scholar 

  37. Porfire A, Tomuta I, Muntean D, Luca L, Licarete E, Alupei MC, et al. Optimizing long-circulating liposomes for delivery of simvastatin to C26 colon carcinoma cells. J Liposome Res. 2015;25(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tyagi N, De R, Begun J, Popat A. Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int J Pharm. 2017;518(1–2):220–7.

    Article  CAS  PubMed  Google Scholar 

  39. Fang Z, Bhandari B. Encapsulation of polyphenols—a review. Trends Food Sci Technol. 2010;21(10):510–23.

    Article  CAS  Google Scholar 

  40. Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int J Pharm. 2011;419(1–2):52–9.

    Article  CAS  PubMed  Google Scholar 

  41. Ong SGM, Chitneni M, Lee KS, Ming LC, Yuen KH. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics. 2016;8(4):1–12.

    Article  Google Scholar 

  42. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98.

    Article  Google Scholar 

  43. Xu X, Costa AP, Khan MA, Burgess DJ. Application of quality by design to formulation and processing of protein liposomes. Int J Pharm. 2012;434(1–2):349–59.

    Article  CAS  PubMed  Google Scholar 

  44. Radhakrishnan R, Kulhari H, Pooja D, Gudem S, Bhargava S, Shukla R, et al. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids. 2016;198:51–60.

    Article  CAS  PubMed  Google Scholar 

  45. Yang K, Delaney JT, Schubert US, Fahr A. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method. J Liposome Res. 2012;22(1):31–41.

    Article  PubMed  Google Scholar 

  46. Nkanga CI, Bapolisi AM, Okafor NI, Krause RWM. General perception of liposomes: formation, manufacturing and applications. In: Liposomes—advances and perspectives. IntechOpen; 2019.

  47. Tefas LR, Sylvester B, Tomuta I, Sesarman A, Licarete E, Banciu M, et al. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des Devel Ther. 2017;11:1605–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernández-Rojas B, Gutiérrez-Venegas G. Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sci. 2018;209(August):435–54.

    Article  PubMed  Google Scholar 

  49. Vyas SP, Sihorkar V, Mishra V. Controlled and targeted drug delivery strategies towards intraperiodontal pocket diseases. J Clin Pharm Ther. 2000;25(1):21–42.

    Article  CAS  PubMed  Google Scholar 

  50. Kwon H-JE, Jiang R. Development of Teeth ☆. 2nd ed. Reference module in biomedical sciences. Elsevier Inc.; 2018. p. 1–11.

  51. Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics. 2019;9(9):2694–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trubiani O, Pizzicannella J, Caputi S, Marchisio M, Mazzon E, Paganelli R, et al. Periodontal ligament stem cells: current knowledge and future perspectives. Stem Cells Dev. 2019;28(15):995–1003.

    Article  PubMed  Google Scholar 

  53. Jain N, Jain GK, Javed S, Iqbal Z, Talegaonkar S, Ahmad FJ, et al. Recent approaches for the treatment of periodontitis. Drug Discov Today. 2008;13(21–22):932–43.

    Article  CAS  PubMed  Google Scholar 

  54. Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2(1):187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Lu Y, Liu J, Jin C, Meng Y, Pei D. Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic differentiation of human periodontal ligament cells. BMC Oral Health. 2019;19(1):1–10.

    Article  Google Scholar 

Download references

Funding

This research was financed by the University of Medicine and Pharmacy Iuliu Hațieganu Cluj-Napoca, Romania, under Grant no. 1529/7/18.01.2019 and under Grant no. 4944/16/8.03.2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Tomuță.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbălată, C.I., Tomuță, I., Achim, M. et al. Application of the QbD Approach in the Development of a Liposomal Formulation with EGCG. J Pharm Innov 17, 867–880 (2022). https://doi.org/10.1007/s12247-021-09541-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09541-w

Keywords

Navigation