American Journal of Potato Research

, Volume 94, Issue 5, pp 490–499 | Cite as

Association of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in Potato Growing Regions of Washington, Idaho, and Oregon

  • Jenita ThinakaranEmail author
  • David R. Horton
  • W. Rodney Cooper
  • Andrew S. Jensen
  • Carrie H. Wohleb
  • Jennifer Dahan
  • Tariq Mustafa
  • Alexander V. Karasev
  • Joseph E. Munyaneza


Potato psyllid, Bactericera cockerelli (Šulc), causes economic damage to potato crops throughout the major potato growing regions of western North America. When cultivated crops are not available, potato psyllid often occurs on non-crop hosts. In the southern U.S. and northern Mexico, native species of Lycium (Solanaceae) are important non-crop hosts for the psyllid. We determined whether Old World species of Lycium now widespread in the Pacific Northwest are reservoirs of potato psyllid in this growing region. We examined Lycium spp. across a wide geographic region in Washington, Oregon, and Idaho at irregular intervals during three growing seasons. Potato psyllids were present at all locations. To determine whether Lycium is also a host during intervals of the year in which the potato crop is not available, we monitored a subset of these sites over the entire year. Six sites were monitored at 1- to 3-week intervals from June 2014 to June 2016. Psyllids were present on Lycium throughout the year at all sites, including during winter, indicating that Lycium is also a host when the potato crop is seasonally not available. Psyllid populations included a mixture of Northwestern and Western haplotypes. We observed well-defined spring and fall peaks in adult numbers, with peaks separated by long intervals in which psyllid numbers were very low. Seasonal patterns in psyllid numbers on these non-native Lycium hosts were very similar to what has been observed on native Lycium in the desert southwest region of the U.S. Our findings demonstrate that potato psyllid associates with Lycium across a broad geographic region within the Pacific Northwest. These results will assist in predicting sources of potato psyllid colonizing potatoes in this important growing region.


Host plant Genetic haplotypes Overwintering Lycium chinense Lycium barbarum 


El psílido de la papa, Bactericera cockerelli (Šulc), causa daño económico a los cultivos de papa a lo largo de las regiones importantes productoras de papa del occidente de Norteamérica. Cuando los cultivos no están disponibles, el psílido de la papa se presenta con frecuencia en hospederos que no son el cultivo. En el sur de Estados Unidos y en el norte de México, especies nativas de Lycium (Solanaceae) son hospederas alternativas importantes para el psílido. Nosotros determinamos si las especies de Lycium del viejo mundo ahora ampliamente dispersas en el pacífico noroccidental son reservorios del psílido de la papa en esta región del cultivo. Examinamos Lycium spp. a lo largo de una amplia región geográfica en Washington, Oregon y Idaho a intervalos irregulares durante tres ciclos de cultivo. Los psílidos de la papa estuvieron presentes en todas las localidades. Para determinar si Lycium también es hospedante durante intervalos del año en los cuales el cultivo de la papa no esta disponible, monitoreamos un subgrupo de estos sitios a lo largo de todo el año. Se monitorearon seis sitios a intervalos de 1 a 3 semanas de junio de 2014 a junio de 2016. Los psílidos estuvieron presentes en Lycium a lo largo de todo el año en todos los sitios, inclusive durante el invierno, indicando que Lycium también es un hospedero cuando el cultivo de papa no esta disponible fuera del ciclo de cultivo. La población de psílidos incluyó una mezcla de haplotipos del noroccidente y del occidente. Observamos picos bien definidos en la primavera y el otoño en número de adultos, con separación de los picos por largos intervalos en los cuales los números de psílidos fueron muy bajos. Los patrones estacionales en números de psílidos en estos hospederos de Lycium no nativos fueron muy similares a lo que se ha observado en Lycium nativo en el desierto de la región suroccidental de los E.U.A. Lo que nosotros encontramos demuestra que el psílido de la papa se asocia con Lycium a lo largo de una amplia región geográfica dentro del pacífico noroccidental. Estos resultados respaldarán en las fuentes de predicción del psílido de la papa colonizando papas en esta región importante del cultivo.



We thank Kim Hummer for advice on morphological identification of Lycium spp. Our thanks are due to Trish Durand and Tony Stadelman of the Grant County Weed Board, Ephrata, WA, Robin Kusske of the Franklin County Weed Board, Pasco, WA, and Amoret Bunn of the Pacific Northwest National Laboratory, Richland, WA for help with locating Lycium sampling sites. We thank Alicia Hodnik, and Cesar Reyes (Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID), Millie Heidt, Debra Broers, Merilee Bayer, Tamera Lewis, Becky Cochran, Pauline Anderson, and Francisco de la Rosa (all with USDA-ARS, Wapato, WA) for their technical assistance. We thank Warrick Nelson (The New Zealand Institute for Plant and Food Research Limited, New Zealand), Don Henne (Monsanto Company, Kihei, HI), and Eugene Miliczky (USDA-ARS, Wapato, WA) for reviewing an earlier version of this manuscript. Financial support for this research was partially provided by the Northwest Potato Research Consortium, USDA-ARS State Cooperative Potato Research Program, USDA-NIFA-SCRI (Project #2015-51181-24292), Washington State Department of Agriculture-Specialty Crop Block Grant Program, and Washington State Commission on Pesticide Registration. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.


  1. Ackerman, T.L., E.M. Romney, A. Wallace, and J.E. Kinnear. 1980. Phenology of desert shrubs in southern Nye County, Nevada. Great Basin Naturalist Memoirs 4: 4–23.Google Scholar
  2. Arslan, A., P.M. Bessey, K. Matasuda, and N.F. Oebker. 1985. Physiological effects of psyllid (Paratrioza cockerelli) on potato. American Potato Journal 62: 9–22.Google Scholar
  3. Baldwin, B.G., D.H. Goldman, D.J. Keil, R. Patterson, T.J. Rosatti, and D.H. Wilken. 2012. The Jepson manual: Vascular plants of California. Berkeley: University of California Press.Google Scholar
  4. Barnes, A.M., Agnew N.M., and Vereijssen J. 2014. Non-crop host plants: prime real estate for the tomato potato psyllid in New Zealand? Accessed 22 Nov 2016
  5. Binkley, A.M. 1929. Transmission studies with the new psyllid-yellows disease of solanaceous plants. Science 70: 615.CrossRefPubMedGoogle Scholar
  6. Castillo Carrillo, C.I., Z. Fu, A.S. Jensen, and W.E. Snyder. 2016. Arthropod pests and predators associated with bittersweet nightshade, a noncrop host of the potato psyllid (Hemiptera: Triozidae). Environmental Entomology 45: 873–882.CrossRefPubMedGoogle Scholar
  7. Chapman, R.I., L. Strube, and B. Bextine. 2010. Population genetics of the potato psyllid: Impacts on zebra Chip epidemiology. Proceedings of the 10 th annual zebra chip Reporting Session. TX: Dallas Accessed 07 Nov 2016.
  8. Cooper, W.R., K.D. Swisher, S.F. Garczynski, T. Mustafa, J.E. Munyaneza, and D.R. Horton. 2015. Wolbachia infection differs among divergent mitochondrial haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Annals of the Entomological Society of America 108: 137–145.CrossRefGoogle Scholar
  9. Cranshaw, W.S. 1994. The potato (tomato) psyllid, Paratiroza cockerelli (Sulc), as a pest of potatoes. In Advances in potato pest biology and management, ed. G.W. Zehnder, M.L. Powelson, R.K. Hansson, and K.V. Raman, 83–95. St. Paul: APS.Google Scholar
  10. Cranshaw, W.S. 2001. Diseases caused by insect toxin: Psyllid yellows. In Compendium of potato diseases, ed. W.R. Stevenson, R. Loria, G.D. Franc, and D.P. Weingartner, 2nd ed., 73–74. St. Paul, MN: APS.Google Scholar
  11. Crosslin, J.M., H. Lin, and J.E. Munyaneza. 2011. Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwestern Entomologist 36: 125–135.CrossRefGoogle Scholar
  12. Crosslin, J.M., P. Hamm, J.E. Eggers, S.I. Rondon, V.G. Sengoda, and J.E. Munyaneza. 2012a. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington State. Plant Disease 96 (3): 452.CrossRefGoogle Scholar
  13. Crosslin, J.M., N. Olsen, and P. Nolte. 2012b. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Idaho. Plant Disease 96: 453.CrossRefGoogle Scholar
  14. Eyer, J.R., and R.F. Crawford. 1933. Observations on the feeding habits of the potato psyllid (Paratrioza cockerelli Sulc.) and the pathological history of the “psyllid yellows” which it produces. Journal of Economic Entomology 26: 846–850.Google Scholar
  15. Feinbrun, N. 1968. The genus Lycium in the Flora Orientalis region. Collectanea Botanica 7: 359–379.Google Scholar
  16. Henne, D.C., L. Paetzold, F. Workneh, and C.M. Rush. 2010. Evaluation of potato psyllid cold tolerance, overwintering survival, sticky trap sampling, and effects of liberibacter on potato psyllid alternate host plants. Proceedings of the 10th annual zebra Chip Reporting Session. TX: Dallas. Accessed 07 Nov 2016.
  17. Horton, D.R., J.E. Munyaneza, K.D. Swisher, E. Echegaray, A.F. Murphy, S.I. Rondon, V.G. Sengoda, L.G. Neven, and A.S. Jensen. 2014. What is the source of potato psyllids colonizing Washington, Oregon, and Idaho potato fields? Potato Progress 14 (2): 1–6.Google Scholar
  18. Horton, D.R., W.R. Cooper, J.E. Munyaneza, K.D. Swisher, E.R. Echegaray, A.F. Murphy, S.I. Rondon, C.H. Wohleb, T.D. Waters, and A.S. Jensen. 2015a. A new problem and old questions: Potato psyllid in the Pacific Northwest. American Entomologist 61 (4): 234–244. doi: 10.1093/ae/tmv047.CrossRefGoogle Scholar
  19. Horton, D., R. Cooper, J. Munyaneza, K. Swisher, J. Thinakaran, C. Wohleb, T. Waters, and A. Jensen. 2015b. Non-potato host plants of potato psyllids in the Pacific Northwest: A year-round complication? Potato Progress 15 (2): 1–5.Google Scholar
  20. Horton, D.R., J. Thinakaran, W.R. Cooper, J.E. Munyaneza, C.H. Wohleb, T.D. Waters, W.E. Snyder, Z. Fu, D.W. Crowder, and A.S. Jensen. 2016. Matrimony vine and potato psyllid in the Pacific Northwest: A worrisome marriage? Potato Progress 16 (14): 1–12.Google Scholar
  21. Jensen, A.S., S.I. Rondon, A.F. Murphy, and E.R. Echegaray. 2012. Overwintering of potato psyllid in the Northwest on Solanum dulcamara. Proceedings of the 12th Annual Zebra Chip Reporting Session. San Antonio. ( Accessed 07 Nov 2016.
  22. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Mentijies, and A. Drummond. 2012. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liefting, L.W., B.S. Weir, S.R. Pennycook, and G.R.G. Clover. 2009. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. International Journal of Systematic and Evolutionary Microbiology 59: 2274–2276.Google Scholar
  24. Munyaneza, J.E. 2012. Zebra chip disease of potato: Biology, epidemiology, and management. American Journal of Potato Research 89: 329–350. doi: 10.1007/s12230-012-9262-3.CrossRefGoogle Scholar
  25. Munyaneza, J.E. 2015. Zebra chip disease, Candidatus Liberibacter, and potato psyllid: A global threat to the potato industry. American Journal of Potato Research 92: 230–235. doi: 10.1007/s12230-015-9448-6.CrossRefGoogle Scholar
  26. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Batericera cockerelli (Homoptera: Psyllidae) with "zebra chip", a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefPubMedGoogle Scholar
  27. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–39.Google Scholar
  28. Munyaneza, J.E., J.M. Crosslin, and J.L. Buchman. 2009. Seasonal occurrence and abundance of the potato psyllid, Bactericera cockerelli, in south Central Washington. American Journal of Potato Research 86: 513–518.CrossRefGoogle Scholar
  29. Munz, P.A., and D.D. Keck. 1968. A California flora and supplement. Berkeley: University of California Press.Google Scholar
  30. Murphy, A.F., S.I. Rondon, and A.S. Jensen. 2013. First report of potato psyllids, Bactericera cockerelli overwintering in the Pacific Northwest. American Journal of Potato Research 90: 294–296. doi: 10.1007/s12230-012-9281-0.CrossRefGoogle Scholar
  31. Murphy, A.F., R.A. Cating, A. Goyer, P.B. Hamm, and S.I. Rondon. 2014. First report of natural infection by ‘Candidatus Liberibacter solanacearum’ in bittersweet nightshade (Solanaum dulcamara) in the Columbia basin of eastern Oregon. Plant Disease 98: 1425.CrossRefGoogle Scholar
  32. NASS. 2016. Potatoes 2015 summary (September 2016). United States Department of Agriculture, National Agricultural Statistics Service. Accessed 05 Nov 2016.
  33. Nelson, W.R., K.D. Swisher, J.M. Crosslin, and J.E. Munyaneza. 2014. Seasonal dispersal of the potato psyllid, Bactericera cockerelli, into potato crops. Southwestern Entomologist 39 (1): 177–186.CrossRefGoogle Scholar
  34. Pletsch, D.J. 1947. The potato psyllid Paratrioza cockerelli (Sulc), its biology and control. Montana Agricultural Experiment Station Bulletin 446: 95.Google Scholar
  35. Richards, B.L. 1927. A new and destructive disease of the potato in Utah and its relation to the potato psylla. Proceedings of the Potato Association of America. 14:94.Google Scholar
  36. Romney, V.E. 1935. Tomato psyllid (Paratrioza cockerelli Sulc.). The Insect Pest survey Bulletin 15 (2): 43.Google Scholar
  37. Romney, V.E. 1939. Breeding areas of the tomato psyllid, Paratrioza cockerelli (Sulc). Proceedings of the Utah Academy of Science 12: 233–239.Google Scholar
  38. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology 41: 1019–1028.CrossRefGoogle Scholar
  39. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2013a. Temporal and spatial analysis of potato psyllid haplotypes in the United States. Environmental Entomology 42 (2): 381–393.CrossRefPubMedGoogle Scholar
  40. Swisher, K.D., V.G. Sengoda, J. Dixon, E. Echegaray, A.F. Murphy, S.I. Rondon, J.E. Munyaneza, and J.M. Crosslin. 2013b. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, Solanum dulcamara, in the Pacific Northwestern United States. American Journal of Potato Research 90: 570–577. doi: 10.1007/s12230-013-9330-3.CrossRefGoogle Scholar
  41. Swisher, K.D., V.G. Sengoda, J. Dixon, J.E. Munyaneza, A.F. Murphy, S.I. Rondon, B. Thompson, A. Karasev, E.J. Wenninger, N. Olsen, and J.M. Crosslin. 2014. Assessing potato psyllid haplotypes in potato crops in the Pacific Northwestern United States. American Journal of Potato Research 91: 485–491. doi: 10.1007/s12230-014-9378-8.CrossRefGoogle Scholar
  42. Thinakaran, J., E.A. Pierson, M. Longnecker, J.E. Munyaneza, C.M. Rush, and D.C. Henne. 2015a. Settling and ovipositional behavior of Bactericera cockerelli (Hemiptera: Triozidae) on solanaceous hosts under field and laboratory conditions. Journal of Economic Entomology 108 (3): 904–916.CrossRefPubMedGoogle Scholar
  43. Thinakaran, J., E. Pierson, M. Kunta, J.E. Munyaneza, C.M. Rush, and D.C. Henne. 2015b. Silverleaf nightshade (Solanum elaeagnifolium), a reservoir host of ‘Candidatus Liberibacter solanacearum’, the putative causal agent of zebra chip disease of potato. Plant Disease 99: 910–915.CrossRefGoogle Scholar
  44. Vereijssen J.D. 2017. Tomato potato psyllid myths. Accessed 22 Mar 2017
  45. Wallace, and Romney. 1972. Radioecology and ecophysiology of desert plants at the Nevada test site. USAEC Report TID-25954.Google Scholar
  46. Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. Technical Bulletin of U.S. Department of Agriculture 1107: 1–24.Google Scholar
  47. Wen, A., I. Malik, V.Y. Alvarado, J.S. Pasche, X. Wang, W. Li, L. Levy, H. Lin, H.B. Scholthof, T.E. Mirkov, C.M. Rush, and N.C. Gudmestad. 2009. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra complex disease of potato in North America. Plant Disease 93: 1102–1115.CrossRefGoogle Scholar
  48. Wenninger, E.J., N. Olsen, M. Thornton, P. Nolte, J. Miller, J. Dahan, and A. V. Karasev. 2014. Three years of monitoring of potato psyllids, ‘Candidatus Liberibacter solanacearum’, and zebra chip in Idaho, pp.6-8. Proceedings of the 14th Annual Zebra Chip Reporting Session. OR: Portland.Google Scholar
  49. Zhang, Z.Y., A. Lu, and W.G. D’Arcy. 1994. Solanaceae. Flora of China. 17: 300 Accessed 08 Nov 2016.Google Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  • Jenita Thinakaran
    • 1
    Email author
  • David R. Horton
    • 1
  • W. Rodney Cooper
    • 1
  • Andrew S. Jensen
    • 2
  • Carrie H. Wohleb
    • 3
  • Jennifer Dahan
    • 4
  • Tariq Mustafa
    • 1
    • 5
  • Alexander V. Karasev
    • 4
  • Joseph E. Munyaneza
    • 1
  1. 1.United States Department of Agriculture-Agricultural Research Service5230 Konnowac Pass RoadWapatoUSA
  2. 2.Northwest Potato Research ConsortiumLakeviewUSA
  3. 3.Regional Vegetable Crops SpecialistWashington State UniversityMoses LakeUSA
  4. 4.Department of Plant, Soil, and Entomological SciencesUniversity of IdahoMoscowUSA
  5. 5.Department of EntomologyUniversity of AgricultureFaisalabadPakistan

Personalised recommendations