Skip to main content
Log in

Large-eddy simulation of low-swirl multi-nozzle combustion with co- and counter-swirling arrays

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Large-eddy simulation (LES) of CH4-air low-swirl flame was carried out in a multi-nozzle combustor with two burner configurations by using a premixed flamelet model. The multi-nozzle burner includes a co-swirling array where all five nozzles act in the same direction and a counter-swirling array where the center nozzle is in the opposite swirling direction to the outer nozzles. LES results are in good agreement with OH-planar laser-induced florescence data in terms of OH concentrations and combustion progress variables. Numerical results show that the flow of each nozzle is constant before merging. The neighboring flows interact with each other and generate a highvelocity zone with intensive turbulence. The kinetic energy in the interacting region for the co-swirling array is larger than that for the counter-swirling array. After neighboring flow combining, the flow develops into a unified swirling motion similar to a single swirling flow for the co-swirling array, whereas the flow maintains the individual swirling structures for the counter-swirling arrangement. However, the swirling array exerts minimal effect on multi-nozzle combustion in terms of the temperature distributions and combustion progress of premixed low-swirl multi-nozzle flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Chan, K. S. Lau, W. K. Chin and R. K. Cheng, Freely propagating open premixed turbulent flames stabilized by swirl, P. Combust. Inst., 24 (1) (1992) 511–518.

    Article  Google Scholar 

  2. M. R. Johnson, D. Littlejohn, W. A. Nazeer, K. O. Smith and R. K. Cheng, A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines, P. Combust. Inst., 30 (2) (2005) 2867–2874.

    Article  Google Scholar 

  3. M. Day, S. Tachibana, J. Bell, M. Lijewski, V. Beckner and R. K. Cheng, A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames I. methane flames, Combust. Flame, 159 (1) (2012) 275–290.

    Article  Google Scholar 

  4. K.-J. Nogenmyr, C. Fureby, X. S. Bai, P. Petersson, R. Collin and M. Linne, Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame, Combust. Flame, 156 (1) (2009) 25–36.

    Article  Google Scholar 

  5. K.-J. Nogenmyr, P. Petersson, X. S. Bai, C. Fureby, R. Collin, A. Lantz, M. Linne and M. Aldénc, Structure and stabilization mechanism of a stratified premixed low swirl flame, P. Combust. Inst., 33 (1) (2011) 1567–1574.

    Article  Google Scholar 

  6. D. M. Kang, F. E. C. Culick and A. Ratner, Combustion dynamics of a low-swirl combustor, Combust. Flame., 151 (3) (2007) 412–425.

    Article  Google Scholar 

  7. M. Koyama and S. Tachibana, Technical applicability of low-swirl fuel nozzle for liquid-fueled industrial gas turbine combustor, Fuel, 107 (2013) 766–776.

    Article  Google Scholar 

  8. D. E. Brandt and R. R. Wesoriek, GE gas turbine design philosophy, GE Power Systems, GER-3434d.

  9. D. Fanaca, P. R. Alemela, C. Hirsch and T. Sattelmayer, Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber, J. Eng. Gas Turb. Power, 132 (7) (2010) 071502-1-071502-7.

    Article  Google Scholar 

  10. B. Boehm, A. Dreizler, M. Gnirss, C. Tropea, J. Findeisen and H. Schiffer, Experimental investigation of turbulence structure in a three-nozzle combustor, ASME Turbo Expo 2007, Montreal, Canada, May 14–17 (2007) GT2007-27111.

    Book  Google Scholar 

  11. M. Aguilar, M. Malanoski, G. Adhitya, B. Emerson, V. Acharya, D. Noble and T. Lieuwen, Helical flow disturbances in a multi-nozzle combustor, ASME Turbo Expo 2014, Düsseldorf, Germany, June 16–20 (2014) GT2014-26272.

    Google Scholar 

  12. M. T. Szedlmayer, B. D. Quay, J. Samarasinghe, A. D. Rosa, J. G. Lee and D. A. Santavicca, Forced flame response of a lean premixed multi-nozzle can combustor, ASME Turbo Expo 2011, British Columbia, Canada, June 6–10 (2011) GT2011-46080.

    Google Scholar 

  13. D. Durox, K. Prieur, T. Schuller and S. Candel, Different flame patterns linked with swirling injector interactions in an annular combustor, ASME Turbo Expo 2015, Montréal, Canada, June 15–19 (2015) GT2015-42034.

    Google Scholar 

  14. Y. H. Kao, S. B. Tambe and S. M. Jeng, Aerodynamics of linearly arranged rad-rad swirlers, effect of number of swirlers and alignment, ASME Turbo Expo 2013, San Antonio, Texas, USA, June 3–7 (2013) GT2013-94280.

    Google Scholar 

  15. Y. H. Kao, S. B. Tambe and S. M. Jeng, Aerodynamics study of a linearly-arranged 5-swirler array, ASME Turbo Expo 2014, Düsseldorf, Germany, June 16–20 (2014) GT2014-25094.

    Google Scholar 

  16. O. Bibik, E. Lubarsky, D. Shcherbik and M. Hadjipanayis, Rotational traveling of tangential wave in multi-injectors LRE combustor simulator, 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7–10 (2008) AIAA 2008-1001.

    Google Scholar 

  17. P. Rojatkar, Y. H. Kao, M. A. Jog and S. M. Jeng, Effect of swirler offset on aerodynamics of multiswirler arrays, ASME Turbo Expo 2014, Düsseldorf, Germany, June 16–20 (2014) GT2014-26236.

    Google Scholar 

  18. J. Cai, S. M. Jeng and R. Tacina, Multi-swirler aerodynamics: comparison of different configurations, ASME Turbo Expo 2002, Amsterdam, The Netherlands, June 3–6 (2002) GT2002-30464.

    Google Scholar 

  19. J. Kim, K. Yoo, H. Sung, L. Zhang and V. Yang, A numerical study of flow dynamics in an annular combustor with multiple swirl injectors, 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, January 4–7 (2010) AIAA 2010-583.

    Google Scholar 

  20. G. Erlebacher, M. Y. Hussani, C. G. Speziale and T. A. Zang, Toward the large eddy simulation of compressible turbulent flows, J. Fluid Mech., 238 (1992) 155–158.

    Article  MATH  Google Scholar 

  21. I. C. Casci and C. Bruno, Recent advances in the aerospace sciences, Plenum Press, New York, USA (1985).

    Book  Google Scholar 

  22. N. Swaminathan and K. N. C. Bray, Turbulent premixed flames, Cambridge University Press, UK (2011).

    Book  MATH  Google Scholar 

  23. A. Oijen and L. P. H. Goey, Modelling of premixed laminar flames using flamelet-generated manifolds, Combust. Sci. Tech., 161 (1) (2000) 113–137.

    Article  Google Scholar 

  24. R. K. Cheng, D. Littlejohn, P. A. Strakey and T. Sidwell, Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions, P. Combust. Inst., 32 (2) (2009) 3001–3009.

    Article  Google Scholar 

  25. J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech., 285 (1995) 69–94.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. J. Liu, B. Ge, Y. S. Tian, Y. W. Yuan, ·S. S. Zang and S. L. Weng, Experimental investigations and large eddy simulation of low-swirl combustion in a lean premixed multinozzle combustor, Exp. Fluids, 56 (34) (2015) Doi: 10.1007/s00348-015-1899-5.

    Google Scholar 

  27. A. Nasr and J. C. S. Lai, Comparison of flow characteristics in the near field of two parallel plane jets and an offset plane jet, Phys. Fluids, 9 (10) (1997) 2919–2931.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Liu.

Additional information

Recommended by Associate Editor Jeong Park

Weijie Liu recieved his Ph.D. degrees in Power Machinery and Engineering from Shanghai Jiao Tong University, China, in 2017. He is currently an engineer at Aero-Engine Academy of China. His research interests include lean premixed combustion, multi-nozzle combustion, and theromacoustic instabilities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ge, B., Zang, S. et al. Large-eddy simulation of low-swirl multi-nozzle combustion with co- and counter-swirling arrays. J Mech Sci Technol 33, 423–431 (2019). https://doi.org/10.1007/s12206-018-1242-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-1242-1

Keywords

Navigation