Skip to main content
Log in

Molecular dynamics study of Hugoniot relation in shocked nickel single crystal

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We study shock behavior of single crystalline nickel (Ni) using molecular dynamics (MD) simulations. Five different embedded-atom method (EAM) potential models were tested to select a suitable potential for shock simulation by comparing Grüneisen parameter, a key parameter in the equation of state describing energy change before and after shock load. We conducted shock propagation simulations along <100> direction of Ni and extracted (1) pressure-volume Hugoniot curve and (2) shock velocity (Us) vs particle velocity (up) relation with selected potential models by Grüneisen parameter. Although the Hugoniot p-V curve calculated by the MD simulations is slightly higher than the experimental data, its trend is overall in good comparison, considering that the experimental data is obtained from polycrystalline Ni sample containing many internal defects. The Us-up curve shows deviation especially for low up, since the sound speed c0 along <100> direction acts as the lower bound for shock velocity (Usc0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Parkinson, Properties and applications of electroless nickel, Nickel Development Institute (1995).

    Google Scholar 

  2. K. Chung and H.-K. Kim, High temperature deformation and fracture mechanisms in a nickel aluminide alloy, KSME Journal, 8 (4) (1994) 347–355.

    Article  Google Scholar 

  3. S. H. Kang and D. E. Kim, Investigation of EDM characteristics of nickel-based heat resistant alloy, KSME International Journal, 17 (10) (2003) 1475–1484.

    Article  Google Scholar 

  4. P. J. Hay and W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, The Journal of Chemical Physics, 82 (1) (1984).

    Google Scholar 

  5. B. J. Alder and T. E. W., Studies in molecular dynamics. I. General method, The Journal of Chemical Physics, 31 (2) (1959).

    Google Scholar 

  6. M. J. Tambe, N. Bonini and N. Marzari, Bulk aluminum at high pressure: A first-principles study, Physical Review B, 77 (17) (2008) 172102.

    Article  Google Scholar 

  7. K. Kadau et al., Microscopic view of structural phase transitions induced by shock waves, Science, 296 (5573) (2002) 1681–1684.

    Article  Google Scholar 

  8. D. H. Tsai and C. W. Beckett, Shock wave propagation in cubic lattices, Journal of Geophysical Research, 71 (10) (1966) 2601.

    Article  Google Scholar 

  9. A. Paskin and G. J. Dienes, Molecular dynamic simulations of shock waves in a three dimensional solid, Journal of Applied Physics, 43 (4) (1972) 1605–1610.

    Article  Google Scholar 

  10. B. L. Holian and G. K. Straub, Molecular dynamics of shock waves in three-dimensional solids: Transition from nonsteady to steady waves in perfect crystals and implications for the Rankine-Hugoniot conditions, Physical Review Letters, 43 (21) (1979) 1598–1600.

    Article  Google Scholar 

  11. T. C. Germann et al., Orientation dependence in molecular dynamics simulations of shocked single crystals, Physical Review Letters, 84 (23) (2000) 5351–5354.

    Article  Google Scholar 

  12. E. M. Bringa et al., Atomistic shock Hugoniot simulation of single-crystal copper, Journal of Applied Physics, 96 (7) (2004) 3793–3799.

    Article  Google Scholar 

  13. B. Cao, E. M. Bringa and M. A. Meyers, Shock compression of monocrystalline copper: Atomistic simulations, Metallurgical and Materials Transactions A, 38 (11) (2007) 2681–2688.

    Article  Google Scholar 

  14. A. Kubota, D. B. Reisman and W. G. Wolfer, Dynamic strength of metals in shock deformation, Applied Physics Letters, 88 (24) (2006) 241924.

    Article  Google Scholar 

  15. J. A. Zimmerman, J. M. Winey and Y. M. Gupta, Elastic anisotropy of shocked aluminum single crystals: Use of molecular dynamics simulations, Physical Review B, 83 (18) (2011) 184113.

    Article  Google Scholar 

  16. H. N. Jarmakani et al., Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals, Acta Materialia, 56 (19) (2008) 5584–5604.

    Article  Google Scholar 

  17. S. P. Marsh, LASL shock Hugoniot data, University of California Press (1980).

    Google Scholar 

  18. M. S. Daw, S. M. Foiles and M. I. Baskes, The embedded-atom method: A review of theory and applications, Materials Science Reports, 9 (7) (1993) 251–310.

    Article  Google Scholar 

  19. A. Voter, Embedded atom method potentials for seven fcc metals: Ni, Pd, Pt, Cu, Ag, Au, and Al, Los Alamos National Laboratory, Unclassified Technical Report No. LAUR (1993) 93–3901.

    Google Scholar 

  20. X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Misfitenergy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69 (14) (2004) 144113.

    Article  Google Scholar 

  21. M. I. Mendelev et al., Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy, Philosophical Magazine, 92 (35) (2012) 4454–4469.

    Article  Google Scholar 

  22. J. P. Du, C. Y. Wang and T. Yu, Construction and application of multi-element EAM potential (Ni-Al-Re) in g /g ¢ Ni-based single crystal superalloys, Modelling and Simulation in Materials Science and Engineering, 21 (1) (2013) 015007.

    Article  Google Scholar 

  23. Y. Mishin et al., Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Physical Review B, 59 (5) (1999) 3393–3407.

    Article  Google Scholar 

  24. S. Rao, T. A. Parthasarathy and C. Woodward, Atomistic simulation of cross-slip processes in model fcc structures, Philosophical Magazine A, 79 (5) (1999) 1167–1192.

    Article  Google Scholar 

  25. A. F. Voter and S. P. Chen, Accurate interatomic potentials for Ni, Al and Ni3Al, MRS Proceedings, 82 (1986) 175.

    Article  Google Scholar 

  26. Y. B. Zeldovich and Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Dover Pub. Inc. (2002) 293–417.

    Google Scholar 

  27. E. Grüneisen, Theorie des festen Zustandes einatomiger Elemente, Annalen der Physik, 344 (12) (1912) 257–306.

    Article  MATH  Google Scholar 

  28. D. C. Wallace, Thermodynamics of crystals, Dover Publications (1998).

    Google Scholar 

  29. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, 117 (1) (1995) 1–19.

    Article  MATH  Google Scholar 

  30. Y. Qi, T. Cagin, W. L. Johnson and W. A. Goddard, Melting and crystallization in Ni nanoclusters: The mesoscale regime, The Journal of Chemical Physics, 115 (1) (2001) 385.

    Article  Google Scholar 

  31. B. L. Holian and P. S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations, Science, 280 (1998) 2085.

    Article  Google Scholar 

  32. R. Kohlhaas, P. H. Dünner and N. Schmitz-Pranghe, Über die Temperaturabhangigkeit der Gitterparameter von Eisen, Kobalt und Nickel im Bereich hoher Temperaturen, Zeitschrift fur Angewandte Physik, 23 (4) (1967) 245–249.

    Google Scholar 

  33. R. N. Abdullaev et al., Density and thermal expansion of high purity nickel over the temperature range from 150 K to 2030 K, International Journal of Thermophysics, 36 (4) (2015) 603–619.

    Article  Google Scholar 

  34. G. A. Alers, Elastic moduli of vanadium, Physical Review, 119 (5) (1960) 1532–1535.

    Article  Google Scholar 

  35. C. Sykes and H. Wilkinson, The specific heat of nickel from 100°C to 600°C, Proceedings of the Physical Society, 50 (5) (1938) 834–851.

    Article  Google Scholar 

  36. P. K. George and E. D. Thompson, The Debye temperature of nickel from 0 to 300°K, Journal of Physics and Chemistry of Solids, 28 (12) (1967) 2539–2544.

    Article  Google Scholar 

  37. C. Kittel, Introduction to solid state physics, New York: Wiley (1966).

    MATH  Google Scholar 

  38. J. D. Honeycutt and H. C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, The Journal of Physical Chemistry, 91 (19) (1987) 4950–4963.

    Article  Google Scholar 

  39. A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials, Modelling and Simulation in Materials Science and Engineering, 20 (4) (2012) 045021.

    Article  Google Scholar 

  40. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 18 (1) (2010) 015012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keonwook Kang.

Additional information

Recommended by Associate Editor Seong-Chan Jun

Jimin Choi received the bachelor of engineering degree in the School of Mechanical Engineering from Yonsei University, Seoul, Korea, in 2012. He is currently a combined M.S./Ph.D. student in the School of Mechanical Engineering, Yonsei University. His current research interests include material behavior at extreme condition.

SangHyuk Yoo graduated with a bachelor of science in Mechanical & System Design Engineering of Hongik University, Seoul, Korea, in 2013. He is currently a combined M.S./Ph.D. student in the School of Mechanical Engineering, Yonsei University. His current research interests include mechanical/ electrical behavior of 2D materials.

Keonwook Kang is Assistant Professor at Yonsei University, Seoul, Korea, since 2013. He received doctoral degree at Stanford University in 2011. His research interests include atomistic modeling of nanomaterials, material behavior in extreme environments and multiscale analysis of crystal plasticity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Yoo, S., Song, S. et al. Molecular dynamics study of Hugoniot relation in shocked nickel single crystal. J Mech Sci Technol 32, 3273–3281 (2018). https://doi.org/10.1007/s12206-018-0629-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0629-3

Keywords

Navigation