Skip to main content
Log in

Triple Quadrupole Mass Spectrometry with Liquid Chromatography and Dispersive Liquid-Liquid Microextraction for the Determination of Monoterpenes in Alcoholic Drinks

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Five monoterpenes (linalool, geraniol, eugenol, carvacrol, and thymol) were directly preconcentrated from alcoholic drinks with no previous sample treatment step using a miniaturized technique based on dispersive liquid-liquid microextraction. Chloroform (300 μL) was rapidly injected into 8 mL of sample, while the addition of a disperser solvent was obviated because of the ethanol content of the alcoholic beverages. The enriched phase was evaporated, reconstituted in 50 μL water, and analyzed by reversed phase liquid chromatography with a mobile phase consisting of 25% acetonitrile (0.1% formic acid) and 75% water (0.1% formic acid) and tandem mass spectrometry with a triple quadrupole in the selected reaction monitoring mode. The matrix effect was evaluated, and quantification by the standard additions method is recommended. Limits of detection ranged from 0.003 to 1.5 ng mL−1, depending on the compound and the matrix. Enrichment factors of between 12 and 88 were obtained. The method was validated through recovery tests, finding values in the 76–128% range. The intraday precision was lower than 20% in terms of relative standard deviation. Different types of alcoholic drinks were analyzed, monoterpenes being detected at concentrations from 0.4 to 627 ng mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arbulu M, Sampedro MC, Sánchez-Ortega A, Gómez-Caballero A, Unceta N, Goicolea MA, Barrio RJ (2013) Characterisation of the flavour profile from Graciano Vitis vinifera wine variety by a novel dual stir bar sorptive extraction methodology coupled to thermal desorption and gas chromatography-mass spectrometry. Anal Chim Acta 777:41–48. doi:10.1016/j.aca.2013.03.024

    Article  CAS  Google Scholar 

  • Badjah Hadj Ahmed AY, Obbed MS, Wabaidur SM, AlOthman ZA, Al-Shaalan NH (2014) High-performance liquid chromatography analysis of phenolic acid, flavonoid, and phenol contents in various natural yemeni honeys using multi-walled carbon nanotubes as a solid-phase extraction adsorbent. J Agric Food Chem 62:5443–5450. doi:10.1021/jf5011758

    Article  CAS  Google Scholar 

  • Beaudry F, Guénette SA, Vachon P (2006) Determination of eugenol in rat plasma by liquid chromatography-quadrupole ion trap mass spectrometry using a simple off-line dansyl chloride derivatization reaction to enhance signal intensity. Biomed Chromatogr 20:1216–1222. doi:10.1002/bmc

    Article  CAS  Google Scholar 

  • Berijani S, Assadi Y, Anbia M, Hosseini MRM, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123:1–9. doi:10.1016/j.chroma.2006.05.010

    Article  CAS  Google Scholar 

  • Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M (2015) Evaluation of three headspace sorptive extraction coatings for the determination of volatile terpenes in honey using gas chromatography–mass spectrometry. J Chromatogr A 1399:18–24. doi:10.1016/j.chroma.2015.04.041

    Article  CAS  Google Scholar 

  • Cantalapiedra A, Gismera MJ, Sevilla MT, Procopio JR (2014) Sensitive and selective determination of phenolic compounds from aromatic plants using an electrochemical detection coupled with HPLC method. Phytochem Anal 25:247–254. doi:10.1002/pca.2500

    Article  CAS  Google Scholar 

  • Commission Decision 2002/657/EC of 12 (2002) Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun L 221:8–36

    Google Scholar 

  • Dighe VV, Gursale AA, Charegaonkar GA (2009) Quantitation of eugenol, cinnamaldehyde and isoeugenol from Cinnamomum tamala Nees and Eberm. leaf powder and Cinnamomum zeylanicum Breyn stem bark powder by LC. Chromatographia 70:1759–1762. doi:10.1365/s10337-009-1382-7

    Article  CAS  Google Scholar 

  • Famiglini G, Termopoli V, Palma P, Capriotti F, Cappiello A (2014) Rapid LC-MS method for the detection of common fragrances in personal care products without sample preparation. Electrophoresis 35:1339–1345. doi:10.1002/elps.201300462

    Article  CAS  Google Scholar 

  • Ferreira V, Hernández-Orte P, Escudero A, López R, Cacho J (1999) Semipreparative reversed-phase liquid chromatographic fractionation of aroma extracts from wine and other alcoholic beverages. J Chromatogr A 864:77–88. doi:10.1016/S0021-9673(99)01004-3

    Article  CAS  Google Scholar 

  • Flamini R (2005) Some advances in the knowledge of grape, wine and distillates chemistry as achieved by mass spectrometry. J Mass Spectrom 40:705–713. doi:10.1002/jms.887

    Article  CAS  Google Scholar 

  • Khajeh M, Moghaddam ZS, Bohlooli M, Khajeh A (2015) Modeling of dispersive liquid–liquid microextraction for determination of essential oil from Borago officinalis L. by using combination of artificial neural network and genetic algorithm method. J Chromatogr Sci 53(10):1801–1807. doi:10.1093/chromsci/bmv065

    Article  CAS  Google Scholar 

  • Meesters RJW, Duisken M, Jähnigen H, Hollender J (2008) Sensitive determination of monoterpene alcohols in urine by HPLC-FLD combined with ESI-MS detection after online-solid phase extraction of the monoterpene-coumarincarbamate derivates. J Chromatogr B 875:444–450. doi:10.1016/j.jchromb.2008.09.024

    Article  CAS  Google Scholar 

  • Melles D, Vielhaber T, Baumann A, Zazzeroni R, Karst U (2013) In chemico evaluation of skin metabolism: investigation of eugenol and isoeugenol by electrochemistry coupled to liquid chromatography and mass spectrometry. J Chromatogr B 913–914:106–112. doi:10.1016/j.jchromb.2012.12.004

    Article  Google Scholar 

  • Mirón D, Lange A, Zimmer AR, Mayorga P, Schapoval EE (2014) HPLC-DAD for the determination of three different classes of antifungals: method characterization, statistical approach, and application to a permeation study. Biomed Chromatogr 28:1728–1737. doi:10.1002/bmc.3213

    Article  Google Scholar 

  • Owen BC, Haupert LJ, Jarrell TM, Marcum CL, Parsell TH, Abu-Omar MM, Bozell JJ, Black SK, Kenttämaa HI (2012) High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal Chem 84:6000–6007. doi:10.1021/ac300762y

    Article  CAS  Google Scholar 

  • Pandey R, Kumar B (2016) HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J Liq Chromatogr Relat Technol 39:225–238. doi:10.1080/10826076.2016.1148048

    Article  CAS  Google Scholar 

  • Pandey R, Rameshkumar KB, Kumar B (2015) Ultra high performance liquid chromatography tandem mass spectrometry method for the simultaneous determination of multiple bioactive constituents in fruit extracts of Myristica fragrans and its marketed polyherbal formulations using a polarity switching. J Sep Sci 38:1277–1285. doi:10.1002/jssc.201401297

    Article  CAS  Google Scholar 

  • Pastor-Belda M, Garrido I, Campillo N, Viñas P, Hellín P, Flores P, Fenoll J (2016) Determination of spirocyclic tetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid–liquid microextraction. Food Chem 202:389–395. doi:10.1016/j.foodchem.2016.01.143

    Article  CAS  Google Scholar 

  • Paula Barros E, Moreira N, Elias Pereira G, Leite SG, Moraes RC, Guedes de Pinho P (2012) Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Talanta 101:177–186. doi:10.1016/j.talanta.2012.08.028

    Article  CAS  Google Scholar 

  • Piñeiro Z, Palma M, Barroso CG (2004) Determination of terpenoids in wines by solid phase extraction and gas chromatography. Anal Chim Acta 513:209–214. doi:10.1016/j.aca.2003.12.044

    Article  Google Scholar 

  • Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116:1–9. doi:10.1016/j.chroma.2006.03.007

    Article  CAS  Google Scholar 

  • Rincón AA, Pino V, Ayala JH, Afonso AM (2011) Headspace-single drop microextraction (HS-SDME) in combination with high-performance liquid chromatography (HPLC) to evaluate the content of alkyl- and methoxy-phenolic compounds in biomass smoke. Talanta 85:1265–1273. doi:10.1016/j.talanta.2011.05.046

    Article  Google Scholar 

  • Ródenas-Montano J, Carrasco-Correa EJ, Beneito-Cambra M, Ramis-Ramos G, Herrero-Martínez JM (2013) Determination of alcohols in essential oils by liquid chromatography with ultraviolet detection after chromogenic derivatization. J Chromatogr A 1296:157–163. doi:10.1016/j.chroma.2013.04.072

    Article  Google Scholar 

  • Rodrigues F, Caldeira M, Cámara JS (2008) Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages. Anal Chim Acta 609:82–104. doi:10.1016/j.aca.2007.12.041

    Article  CAS  Google Scholar 

  • Sereshti H, Izadmanesh Y, Samadi S (2011) Optimized ultrasonic assisted extraction–dispersive liquid–liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. J Chromatogr A 1218:4593–4598. doi:10.1016/j.chroma.2011.05.037

    Article  CAS  Google Scholar 

  • Stevenson PG, Guiochon G (2012) Retention divergence of terpenes with porous graphitized carbon and C18 stationary phases. J Chromatogr A 1247:57–62. doi:10.1016/j.chroma.2012.05.007

    Article  CAS  Google Scholar 

  • Tian C, Wang M, Shen C, Zhao C (2012) Accuracy mass screening and identification of phenolic compounds from the five parts of Abutilon theophrasti Medic. by reverse-phase high-performance liquid chromatography-electrospray ionization-quadrupoles-time of flight-mass spectrometry. J Sep Sci 35:763–772. doi:10.1002/jssc.201100775

    Article  CAS  Google Scholar 

  • Turek C, Stintzing FC (2011) Application of high-performance liquid chromatography diode array detection and mass spectrometry to the analysis of characteristic compounds in various essential oils. Anal Bioanal Chem 400:3109–3123. doi:10.1007/s00216-011-4976-5

    Article  CAS  Google Scholar 

  • Valente IM, Santos CM, Moreira MM, Rodrigues JA (2013) New application of the QuEChERS methodology for the determination of volatile phenols in beverages by liquid chromatography. J Chromatogr A 1271:27–32. doi:10.1016/j.chroma.2012.11.026

    Article  CAS  Google Scholar 

  • Viñas P, Soler-Romera MJ, Hernández-Córdoba M (2006) Liquid chromatographic determination of phenol, thymol and carvacrol in honey using fluorimetric detection. Talanta 69:1063–1067. doi:10.1016/j.talanta.2005.12.030

    Article  Google Scholar 

  • Viñas P, Campillo N, López-García I, Hernández-Córdoba M (2014) Dispersive liquid–liquid microextraction in food analysis. A critical review. Anal Bioanal Chem 406:2067–2099. doi:10.1007/s00216-013-7344-9

    Article  Google Scholar 

  • Viñas P, Campillo N, Pastor-Belda M, Oller A, Hernández-Córdoba M (2015) Determination of phthalate esters in cleaning and personal care products by dispersive liquid–liquid microextraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1376:18–25. doi:10.1016/j.chroma.2014.12.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Hernández-Córdoba.

Ethics declarations

Funding

The authors acknowledge the financial support of the Comunidad Autónoma de la Región de Murcia (CARM, Fundación Séneca, Project 19888/GERM/15), the Spanish MINECO (Project CTQ2015-68049-R), and the European Commission (FEDER/ERDF). A. Oller-Ruiz acknowledges a fellowship from the MINECO (Plan de Garantía Juvenil).

Conflict of Interest

Ainhoa Oller-Ruiz declares that she has no conflict of interest. Pilar Viñas declares that she has no conflict of interest. Natalia Campillo declares that she has no conflict of interest. José Fenoll declares that he has no conflict of interest. Manuel Hernández-Córdoba declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oller-Ruiz, A., Viñas, P., Campillo, N. et al. Triple Quadrupole Mass Spectrometry with Liquid Chromatography and Dispersive Liquid-Liquid Microextraction for the Determination of Monoterpenes in Alcoholic Drinks. Food Anal. Methods 10, 3615–3622 (2017). https://doi.org/10.1007/s12161-017-0937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0937-8

Keywords

Navigation