Skip to main content
Log in

Method validation parameters for drugs and explosives in ambient pressure ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

An approach using method validation (MV) parameters, otherwise known as analytical figures of merit was combined with electrospray ionization high performance ion mobility spectrometry (ESI-HPIMS) to describe an approach for evaluating drugs and explosives analysis in the field. MV parameters such as reduced mobility (K o ), conditional reduced mobility (K c ), resolving power (R p ), theoretical plates (N), linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), repeatability, range, and reporting limit were investigated and developed for eleven drugs and six explosives. Our investigation estimated resolving power at 66 ± 0.64 for the ESI-HPIMS used. The LOD’s calculated ranged from 0.45–2.97 ng of material electrosprayed into the ESI-HPIMS. The LOQ’s calculated falls in the range 4.11–8.63 ng of material electrosprayed into the ESI-HPIMS. The key findings from this investigation were the following: K c proves to be a measure of the identity of an explosive or drug ion; a parameter that may be applied to help aid IMS devices when detecting drugs and explosives. MV parameters, especially, K c , introduced in this study is an effective parameter for establishing a unique identity of a drug or explosive. A control chart is an effective way to monitor the performance of an instrument and may be a useful tool for establishing reliability of confirmatory data in forensic investigations. MV parameters may be a reliable, accurate and unique identification marker for target drugs and explosives capable of differentiating these substances from false positive responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asbury G. R., Klasmeier J., and Hill H. H. Jr. (2000). Analysis of explosives using electrospray ionization/ion mobility spectrometry (ESI/IMS). Talanta 50: 1291–1298.

    Article  CAS  Google Scholar 

  2. Neves J. L., Haigh P. E., Wu C., and McGann W. J. (2003). ITMS-MS analysis of smokeless powder. Int J Ion Mobil Spectrom 6: 1–3.

    CAS  Google Scholar 

  3. Marr A. J., and Groves D. M. (2003). Ion mobility spectrometry of peroxide explosives TATP and HMTD. Int J Ion Mobil Spectrom 6: 59–62.

    CAS  Google Scholar 

  4. Perr J. M., Furton K. G., and Almirall J. R. (2005). Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection. J Sep Sci 28: 177–183.

    Article  CAS  Google Scholar 

  5. Gruznov VM, Baldin MN, Filonenko VG (2004) High-speed gas analysis for explosives detection, NATO Science Series, II: Mathematics, Physics and Chemistry 167 (Vapor and Trace Detection of Explosives for Anti-Terrorism Purposes), 87

  6. Baumbach J. I. (2006). Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384: 1059–1070.

    Article  CAS  Google Scholar 

  7. Buryakov I. A. (2006). Solution of the equation of continuity for ions moving in a gas under the action of a periodic asymmetric alternating waveform. Tech Phys Lett 32: 67–69.

    Article  CAS  Google Scholar 

  8. Luong J., Gras R., Van Meulebroeck R., Sutherland F., and Cortes H. (2006). Gas Chromatography with State-of-the-Art micromachined differential mobility detection: operation and industrial applications. J Chromatogr Sci. 44: 276–282.

    Article  CAS  Google Scholar 

  9. Buryakov IA (2004) NATO Science Series, II: The analytical characteristics of ion mobility increment spectrometer during the detection of explosive vapors and products of their degradation. Mathematics, Physics and Chemistry 167 (Vapor and Trace Detection of Explosives for Anti-Terrorism Purposes), 113

  10. Wu C., Siems W. F., and Hill H. H. Jr. (2000). Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs. Anal Chem 72: 396–403.

    Article  CAS  Google Scholar 

  11. Lawrence A. H. (1989). Characterization of benzodiapine drugs by ion mobility spectrometry. Anal Chem 61: 343–349.

    Article  CAS  Google Scholar 

  12. Miki A., Tatsuno M., Katagi M., Nishikawa M., and Tsuchihashi H. (1997). Analysis of illicit drugs by ion mobility spectrometry. Jpn J Forensic Toxicol 15: 142–148.

    CAS  Google Scholar 

  13. Carroll J. J., Le Tri, and DeBono R. (2004). An ultrafast alternative to HPLC for cleaning validation. Am Lab 36(4): 32–34.

    CAS  Google Scholar 

  14. Debono R., Stefanou S., Davis M., and Walia G. (April 2002). Using Ion Mobility Spectrometry for Cleaning Verification in Pharmaceutical Manufacturing. Pharm Technol N Am 26(4): 72–78.

    CAS  Google Scholar 

  15. Keller T., Keller A., Tutsch-Bauer E., and Monticelli F. (2006). Application of ion mobility spectrometry in cases of forensic interest. Forensic Sci Int 161: 130–140.

    Article  CAS  Google Scholar 

  16. Gillen G., Mahoney C., Wight S., and Lareau R. (2006). Characterization of high explosive particles using cluster secondary ion mass spectrometry. Rapid Commun Mass Spectrom 20: 1949–1953.

    Article  CAS  Google Scholar 

  17. Tarver E. E. (2004). External second gate, fourier transform ion mobility spectrometry: parametric optimization for detection of weapons of mass destruction. Sensors 4: 1–13.

    Article  CAS  Google Scholar 

  18. Kanu A. B., Haigh P. E., and Hill H. H. Jr. (2005). Surface detection of chemical warfare agent simulants and degradation products. Anal Chim Acta 553: 148–159.

    Article  CAS  Google Scholar 

  19. Steiner W. E., Haigh P. H., Clowers B. H., and Hill H. H. Jr. (2003). Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Anal Chem 75: 6068–6076.

    Article  CAS  Google Scholar 

  20. Kanu A. B., Hill H. H. Jr., Gribb M., and Walters R. (2007). A small subsurface ion mobility spectrometer sensor for detecting environmental soil-gas contaminants. J Environ Monit 9: 51–60.

    Article  CAS  Google Scholar 

  21. Clowers B. H., Steiner W. E., Dion H. M., Matz L. M., Tam M., Tarver E. E., and Hill H. H. Jr. (2001). Evaluation of sulfonylurea herbicides using high resolution electrospray ionization ion mobility quadrupole mass spectrometry. Field Anal Chem Techno 5: 302–312.

    Article  CAS  Google Scholar 

  22. Kanu A. B., Gribb M. M., and Hill H. H. Jr. (2008). Predicting optimal resolving power for ambient pressure ion mobility spectrometry. Anal Chem 80: 6610–6619.

    Article  CAS  Google Scholar 

  23. Palmer P. T., and Limero T. F. (2001). Mass spectrometry in the U.S. Space Program: past present and future. J Am Soc Mass Spectrom 12: 656–675.

    Article  CAS  Google Scholar 

  24. Vautz W., Zimmermann D., Hartmann M., Baumbach J. I., Nolte J., and Jung J. (2006). Ion mobility spectrometry for food quality and safety. Food Addit Contam 23(11): 1064–1073.

    Article  CAS  Google Scholar 

  25. Hoaglund-Hyzer C. S., Lee Y. J., Counterman A. E., and Clemmer D. E. (2002). Coupling ion mobility separations, collision activation techniques, and multiple stages of MS for analysis of complex peptide mixtures. Anal Chem 74: 992–1006.

    Article  CAS  Google Scholar 

  26. Sheibani A., and Haghpazir N. (2014). Application of ion mobility spectrometry for the determination of tramadol in biological samples. J Food Drug Anal 22: 500–504.

    Article  CAS  Google Scholar 

  27. Jünger M., Vautz W., Kuhns L., Hofmann S., Ulbricht S., Baumbach J. I., Quintel M., and Perl T. (2012). Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl Microbiol Biotechnol 93(6): 2603–2614.

    Article  Google Scholar 

  28. Vautz W., Baumbach J. I., Westhoff M., Züchner K., Carstens E. T. H., and Perl T. (2010). Breath sampling control for medical application. Int J Mass Spectrom 13(1): 41–46.

    CAS  Google Scholar 

  29. Crawford C. L., Hauck B. C., Tufariello J. A., Harden C. S., McHugh V., Siems W. F., and Hill H. H. Jr. (2012). Accurate and reproducible ion mobility measurements for chemical standard evaluation. Talanta 101: 161–170.

    Article  CAS  Google Scholar 

  30. Kanu A. B., and Hill H. H. Jr. (2007). Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73: 692–699.

    Article  CAS  Google Scholar 

  31. Kanu A. B., Wu C., and Hill H. H. Jr. (2008). Rapid preseparation of interferences for ion mobility spectrometry. Anal Chim Acta 610: 125–134.

    Article  CAS  Google Scholar 

  32. Kanu A. B., and Leal A. (2016). Identity efficiency for high-performance ambient pressure ion mobility spectrometry. Anal Chem 80: 6610–6619.

    Article  Google Scholar 

  33. Harris D. C., and Lucy C. A. (2016). Quantitative Chemical Analysis, 9th edn., W.H. Freeman & Company, New York.

    Google Scholar 

  34. Wittmer D., Chen Y. H., Luckenbill B. K., and Hill H. H. Jr. (1994). Electrospray ionization ion mobility spectrometry. Anal Chem 66: 2348–2355.

    Article  CAS  Google Scholar 

  35. Midey A. J., Camacho A., Sampathkumaran J., Krueger C. A., Osgood M., and Wu C. (2013). Highperformance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food. Anal Chim Acta 804: 197–206.

    Article  CAS  Google Scholar 

  36. Midey A. J., Patel A., Moraff C., Krueger C. A., and Wu C. (2013). Improved detection of drugs of abuse using high-performance ion mobility spectrometry with electrospray ionization (ESIHPIMS) for urine matrices. Talanta 116: 77–83.

    Article  CAS  Google Scholar 

  37. Hilton C. K., Krueger C. A., Midey A. J., Osgood M., Wu J., and Wu C. (2010). Improved analysis of explosives samples with electrospray ionization-high resolution ion mobility spectrometry (ESIHRIMS). Int J Mass Spectrom 298: 64–71.

    Article  CAS  Google Scholar 

  38. Krueger C. A., Hilton C. K., Osgood M., Wu J., and Wu C. (2009). High resolution electrospray ionization ion mobility spectrometry. Int J Ion Mobil Spectrom 12: 33–37.

    Article  CAS  Google Scholar 

  39. Krueger C. A., Midey A. J., Kim T., Osgood M., Wu J., and Wu C. (2011). High performance ion mobility spectrometry as a fast and low cost green analytical technology part I: analysis of nutritional supplements. Int J Ion Mobil Spectrom 14: 71–79.

    Article  Google Scholar 

  40. Thomas C. L. P., Rezgui N. D., Kanu A. B., and Munro W. A. (2000). Measuring the temperature of the drift gas in an ion mobility spectrometer: A technical note. Int J Ion Mobil Spectrom 5(1): 31–36.

    Google Scholar 

  41. Shumate C., St. Louis R. H., and Hill H. H. Jr. (1986). Table of reduced mobility values from ambient pressure ion mobility spectrometry. J Chromatogr A 373: 141–173.

    Article  CAS  Google Scholar 

  42. Dwivedi P., Wu P., Kplosh S. J., Puzon G. J., Xun L., and Hill H. H. Jr. (2008). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 4: 63–80.

    Article  CAS  Google Scholar 

  43. Kanu A. B., Hampikian G., Brandt S. D., and Hill H. H. Jr. (2010). Ribonucleotide and ribonucleoside determination by ambient pressure ion mobility spectrometry. Anal Chim Acta 658: 91–97.

    Article  CAS  Google Scholar 

  44. Kanu A. B., Brandt S. D., Williams M. D., Zhang N., and Hill H. H. Jr. (2013). Analysis of psychoactive cathinones and tryptamines by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry. Anal Chem 85: 8535–8542.

    Article  CAS  Google Scholar 

  45. Miller J. C., and Miller J. N. (1993). Statistics for Analytical Chemistry, 3rd edn., Ellis Horwood, Hemstead, Herts.

    Google Scholar 

  46. Spangler G. E. (2002). Expanded theory for the resolving power of a linear ion mobility spectrometer. Int J Mass Spectrom 220: 399–418.

    Article  CAS  Google Scholar 

  47. Siems W. F., Wu C., Tarver E. E., Hill H. H. Jr., Larsen P. R., and McMinn D. G. (1994). Measuring the resolving power of ion mobility spectrometers. Anal Chem 66: 4195–4201.

    Article  CAS  Google Scholar 

  48. Rokushika S., Hatano H., Baim M. A., and Hill H. H. Jr. (1985). Resolution measurement for ion mobility spectrometry. Anal Chem 57: 1902–1907.

    Article  CAS  Google Scholar 

  49. Ashbury G. R., and Hill H. H. Jr. (2000). Evaluation of Ultrahigh Resolution Ion Mobility Spectrometryas an Analytical Separation Device in Chromatographic Terms. J Microcolumn Sep 12: 172–178.

    Article  Google Scholar 

  50. Kanu A. B., and Hill H. H. Jr. (2008). Ion mobility detection for gas chromatography. J Chromatogr A 1177: 12–27.

    Article  CAS  Google Scholar 

  51. de Levie R. (2003). Two linear correlation coefficients. J Chem Ed 80: 1030–1031.

    Article  Google Scholar 

  52. Kanu A. B., and Kaplan L. J. (2016). The quest for confirmatory data in crime scene investigations. Chem Educator 21: 231–239.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Professional Development Committee (PDC) at Winston-Salem State University for their support of this work. The authors also thank Mr. David Pollard for his support during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Bakarr Kanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedwick, V., Massey, M., Codio, T. et al. Method validation parameters for drugs and explosives in ambient pressure ion mobility spectrometry. Int. J. Ion Mobil. Spec. 20, 75–86 (2017). https://doi.org/10.1007/s12127-017-0221-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-017-0221-z

Keywords

Navigation