Skip to main content

Advertisement

Log in

Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Two breakthrough techniques that have totally revolutionized biology in last 1 decade are the discovery of genome editing tools and growing the stem cells/primary tissue explants in defined 3D culture. In this regard the discovery of CRISPR-Cas9 as a specific gene editing tool and organoid culture from adult stem cell has provided easy handy tools to uncover the process of organ development and also modeling cancer. Genetically modified organoids have been developed by sequential knockout and knockin of driver mutations by genome editing followed by niche-based selection. The modified organoids when xenotransplanted in animal models faithfully recapitulate the neoplastic events of human tumors. The present review focuses on the merging of these two powerful technologies in understanding the complexities of colon and liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    Article  CAS  PubMed  Google Scholar 

  2. Weeber F, Wetering M, Hoogstraact M, Dijkstra KK, Krijgsman O, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. PNAS. 2015;112:13308–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mojica FJM, Juez G, Rodriguez FV. Transcription at different salinities of Haloferax mediterranei sequence adjacent to partially modifies Pstl sites. Mol Microbiol. 1993;9:613–21.

    Article  CAS  PubMed  Google Scholar 

  6. Mojica FJM, Villasenor ChcD, Martinez JG, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60:174–82.

    Article  CAS  PubMed  Google Scholar 

  7. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindromic repeats (CRISPRs) have spacers of extra chromosomal origin. Microbiology. 2005;151:2551–61.

    Article  CAS  PubMed  Google Scholar 

  8. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanism of action. Biol Direct. 2006;7:1–26.

    Google Scholar 

  9. Morange MJ. What history tells us XXXIX. CRISPER-Cas: from a prokaryotic immune system to a universal genome editing tool. J Biosci. 2015;40:829–32.

    Article  PubMed  Google Scholar 

  10. Rodriguez DRR, Solis RR, Elizondo MAG, Rodriguez MLG, Saldana HAB. Genome editing: a perspective on the application of CRISPER/Cas 9 to study human diseases (review). Int J Mol Med. 2019;43:1559–74.

    Google Scholar 

  11. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucelic acid detection with CRISPER-Cas13a/C2c2. Science. 2017;356:438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doudna JA, Charpentier E. The new frontier of genom engineering with CRISPER-Cas9. Science. 2014;346:1258096–1–1258096–2.

    Article  Google Scholar 

  13. Cohen J. A cut above: pair that developed CRISPER earns historic award. Science. 2020;370:271–2.

    Article  CAS  PubMed  Google Scholar 

  14. Sato T, Vries RG, Snippert HJ, Wetering M, Barker N, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  PubMed  Google Scholar 

  15. Sato T, Clevers H. Growing self organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:1190–4.

    Article  CAS  PubMed  Google Scholar 

  16. Clinton J, Koeppen PW. Initiation, expansion, and cryopreservation of human primary tissue-derived normal and disease organoids in embedded three dimensional culture. Curr Protoc Cell Biol. 2019;82:1–20.

    Article  Google Scholar 

  17. Sato T, Clevers H. Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol. 2013;945:319–28.

    Article  PubMed  Google Scholar 

  18. Neal JT, Li X, Zhu J, Giangarra V, Grezeskwaik CL, et al. Organoids modeling of the tumor immune microenvironment. Cell. 2018;175:1972–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11(513):eaay2574.

    Article  CAS  PubMed  Google Scholar 

  20. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13:653–8.

    Article  CAS  PubMed  Google Scholar 

  21. Fujii M, Clevers H, Sato T. Modeling human digestive diseases with CRISPER-Cas9-modified organoids. Gasteroenterology. 2019;156:562–76.

    Article  CAS  Google Scholar 

  22. Yang Q, Oost KC, Liberali P. Engineering human knock-in organoids. Nat Cell Biol. 2020;22:261–3.

    Article  CAS  PubMed  Google Scholar 

  23. Hendrinks D, Clevers H, Artegiani B. CRISPER-Cas tool and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell. 2020;27:705–31.

    Article  Google Scholar 

  24. Yip BH. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecule. 2020;10:839.

    Article  CAS  Google Scholar 

  25. Wang W, Kandimalla R, Hung H, Zhu L, Li Y, et al. Molecular subtyping of colorectal cancer. Recent progress, new challenges and emerging opportunities. Cancer Biol. 2019;55:37–52.

    Article  CAS  Google Scholar 

  26. Schneikert J, Behrens J. The canonical Wnt signaling pathway and its APC partner in colon cancer development. Gut. 2007;56:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drost J, Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521:43–7.

    Article  CAS  PubMed  Google Scholar 

  28. Matano M, Date S, Shimokawa M, Takano A, Fujii M, et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med. 2015;21:256–62.

    Article  CAS  PubMed  Google Scholar 

  29. Fessler E, Drost J, van Hooff SR, Linnekamp JF, Wang X, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8:745–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawasaki K, Fujii M, Sugimoto S, Ishikawa K. Chromosome engineering of human colon derived organoids to develop a model of traditional serrated adenoma. Gastroenterology. 2019;158:638–51.

    Article  PubMed  Google Scholar 

  31. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488:660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han T, Schatoff EM, Murphy C, Zafra MP, Wilkinson JE, et al. Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat Commun. 2017;8:15945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bettington ML, Chetty R. Traditional serrated adenoma: an update. Hum Pathol. 2015;46:933–8.

    Article  PubMed  Google Scholar 

  34. Kawasaki K, Fujii M, Sugimoto S, Ishikawa K, Matano M, et al. Chromosome engineering of human colon derived organoids to develop a model of traditional serrated Adenome. Gastroenterology. 2020;158:638–51.

    Article  CAS  PubMed  Google Scholar 

  35. Takeda H, Kataoka S, Ali MAE, Oshima H, Yamamoto D, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci USA. 2019;116(31):15635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Artegiani B, Hendriks D, Beumer J, Kok R, Zheng X, et al. Fast and efficient generation of knock-in human organoids using homology independent CRISPER-Cas9 precision genome editing. Nat Cell Biol. 2020;22:321–31.

    Article  CAS  PubMed  Google Scholar 

  37. Bou-Nader M, Caruso S, Donne R, Celton-Morizur S, Calderaro J, et al. Polyploidy spectrum: a new marker in HCC classification. Gut. 2020;69:355–64.

    Article  CAS  PubMed  Google Scholar 

  38. Artegiani B, van Voorthuijsen L, Lindeboom RGH, Seinstra D, Heo I, et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell. 2019;24:927–43.

    Article  CAS  PubMed  Google Scholar 

  39. Saborowski A, Wolff K, Spielberg S, Beer B, Hartleben B, et al. Murine liver organoids as a genetically flexible system to study liver cancer In vivo an In vitro. Hepatol Commun. 2019;3:423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erlangga Z, Wolff K, Poth T, Peltzer A, Nahnsen S, Spielberg S, et al. Potent antitumor activity of liposomal irinotecan in an organoid- and CRISPR-Cas9-based murine model of gallbladder cancer. Cancers. 2019;11:1904.

    Article  CAS  PubMed Central  Google Scholar 

  41. Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 2018;22:454–67.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancers. 2018;18:335.

    Article  Google Scholar 

  43. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26:732–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in laboratories of GR and NT are funded by Dept. of Science and Technology (DST-FIST) and Department of Biotechnology, respectively. Part of the figures were drawn using Biorender. We thank the anonymous reviewers for their expert comments in improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GR wrote the manuscript. PBE and GR drew the figures. PBE, RS, and NT edited the manuscript.

Corresponding author

Correspondence to Gayatri Ramakrishna.

Ethics declarations

Conflict of interest

Gayatri Ramakrishna, Preedia E. Babu, Ravinder Singh and Nirupma Trehanpati declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishna, G., Babu, P.E., Singh, R. et al. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids. Hepatol Int 15, 1309–1317 (2021). https://doi.org/10.1007/s12072-021-10237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-021-10237-z

Keywords

Navigation