Skip to main content

Advertisement

Log in

What history tells us XXXIX. CRISPR-Cas: From a prokaryotic immune system to a universal genome editing tool

  • Series
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barrangou R, Frenaux C, Deveau H, Richards M, Boyaval P, et al. 2007 CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D, Davison M and Barrangou R 2011 CRISP-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45 273–297

    Article  CAS  PubMed  Google Scholar 

  • Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, et al. 2008 Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 960–964

    Article  CAS  PubMed  Google Scholar 

  • Carroll D 2008 Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15 1463–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charpentier E and Doudna JA 2013 Rewriting a genome. Nature 495 50–51

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Kim S, Kim JM and Kim J-S 2013 Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31 230–232

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, et al. 2010 Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 757–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cong L, Rann FA, Cox D, Lin S, Barretto R, et al. 2013 Multiplex genome engineering using CRISPR/cas systems. Science 339 819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. 2011 CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 602–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deveau H, Garneau JE and Moineau S 2010 CRISPR/cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64 475–493

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA and Charpentier E 2014 The new frontier of genome engineering with CRISPR-Cas9. Science 346 1077

    Article  CAS  Google Scholar 

  • Garneau JE, Dupuis M-E, Villion M, Romero DA, Barrangou R, et al. 2010 The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 67–71

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P and Siksnys V 2012 Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109 E2579–E2586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gottesman S 2011 Dicing defence in bacteria. Nature. 471 588–589

    Article  CAS  PubMed  Google Scholar 

  • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, et al. 2009 RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139 945–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath P and Barrangou R 2010 CRISPR/Cas, the immune system of bacteria and archaea. Science 327 167–170

    Article  CAS  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, et al. 2013 Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31 227–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacquier A and Dujon B 1985 An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41 383–394

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA 2013 RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31 233–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E 2012 A programmable Dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–821

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI and Koonin EV 2006 A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 1 7

    Article  PubMed Central  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, et al. 2011 Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9 467–477

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guelt M, et al. 2013 RNA-guided human genome engineering via Cas9. Science. 339 823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marraffini LA and Sontheimer EJ 2008 CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322 1843–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marraffini LA and Sontheimer EJ 2010 CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11 181–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, et al. 2011 A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29 143–148

    Article  CAS  PubMed  Google Scholar 

  • Morange M 2015 CRISPR-Cas: the discovery of an immune system in prokaryotes. J. Biosci. 40 1–3

    Article  Google Scholar 

  • Pennisi E 2013 The CRISPR craze. Science 341 833–836

    Article  CAS  PubMed  Google Scholar 

  • Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, et al. 2008 Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26 808–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P and Siksnys V 2011 The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39 9275–9282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS and Gregory PD 2010 Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11 636–646

    Article  CAS  PubMed  Google Scholar 

  • Van der Oost J, Jore MM, Westra ER, Lundgren M and Brouns SJJ 2009 CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34 401–407

    Article  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, et al. 2013 One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waters LS and Storz G 2009 Regulatory RNAs in bacteria. Cell 136 615–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiedenheft B, Sternberg SH and Doudna JA RNA-guided genetic silencing systems in bacteria and archaea. Nature 482 331–338

Download references

Acknowledgements

I am indebted to David Marsh for his critical reading of the manuscript, and to Stuart Newman for his very helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Morange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morange, M. What history tells us XXXIX. CRISPR-Cas: From a prokaryotic immune system to a universal genome editing tool. J Biosci 40, 829–832 (2015). https://doi.org/10.1007/s12038-015-9575-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9575-8

Keywords

Navigation