Hepatology International

, Volume 7, Issue 2, pp 516–523 | Cite as

Oxidative stress is closely associated with insulin resistance in genotypes 1 and 3 chronic hepatitis C

  • Said M. Hashemi
  • David van der Poorten
  • Francisco Barrera
  • Priyanka Bandara
  • Ora Lux
  • James Kench
  • Jacob George
Original Article

Abstract

Background

Chronic hepatitis C (CHC) infection is associated with insulin resistance and with oxidative stress, but the relationship between the two has not been thoroughly examined.

Purpose

To evaluate the association between insulin resistance and oxidative stress in CHC patients.

Method

In 115 CHC patients (68 with genotype 1 and 47 with genotype 3), the relationship between the serum concentration of malondialdehyde (MDA), a marker of oxidative stress and insulin resistance as defined by the homeostasis model (HOMA-IR) was examined.

Results

There was no significant difference in MDA levels between genotype 1- and genotype 3-infected subjects (12.882 vs. 12.426 ng/mL, p = 0.2). By univariate analysis, factors associated with HOMA-IR in both genotypes were oxidative stress as measured by MDA (p = 0.002), body mass index (BMI), portal activity, and fibrosis. Genotype-specific differences in HOMA-IR association were steatosis and triglycerides (TG) for genotype 1, and age and glutathione (GSH) for genotype 3. In a stepwise multiple linear regression analysis in both genotypes, MDA was a significant and independent predictor of HOMA-IR (p = 0.04). As expected, BMI and fibrosis were likewise independently correlated to HOMA-IR. In addition, MDA levels were higher (p < 0.001) and GSH levels were lower (p = 0.023) in insulin-resistant subjects compared to their insulin-sensitive counterparts.

Conclusions

It is concluded that in CHC, oxidative stress is an independent predictor of HOMA-IR, irrespective of virus genotype. Further studies on the role of oxidative stress in the development of insulin resistance in CHC are warranted.

Keywords

Hepatitis C Insulin resistance Malondialdehyde Oxidative stress 

Abbreviations

CHC

Chronic hepatitis C

MDA

Malondialdehyde

GSH

Glutathione

HOMA-IR

Homeostasis model assessment of insulin resistance

BMI

Body mass index

WHR

Waist/hip ratio

IR

Insulin resistance

HCC

Hepatocellular carcinoma

HCV

Hepatitis C virus

IR

Insulin resistance

ROS

Reactive oxygen species

ALT

Alanine aminotransferase

AST

Aspartate aminotransferase

GGT

Gamma-glutamyl transpeptidase

T-chol

Total cholesterol

HDL-C

High density lipoprotein cholesterol

LDL-C

Low density lipoprotein cholesterol

TG

Triglycerides

HIV

Human immunodeficiency virus

HPLC

High performance liquid chromatography

SD

Standard deviation

DNPH

Dinitrophenylhydrazine

UV

Ultraviolet

NS3

Non-structural protein 3

NS5A

Non-structural protein 5A

SOCS-3

Suppressor of cytokine signaling-3

NF-κβ

Nuclear factor-κβ

TNF-α

Tumor necrosis factor-α

References

  1. 1.
    Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 2005;7(7–8):1040–1052PubMedCrossRefGoogle Scholar
  2. 2.
    Cheeseman KH. Mechanisms and effects of lipid peroxidation. Mol Aspects Med 1993;14(3):191–197PubMedCrossRefGoogle Scholar
  3. 3.
    Romero MJ, Bosch-Morell F, Romero B, et al. Serum malodialdehyde: possible use for the clinical management of chronic hepatitis C patients. Free Radic Biol Med 1998;25(9):993–997PubMedCrossRefGoogle Scholar
  4. 4.
    Paradis V, Mathurin P, Kollinger M, et al. In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features. J Clin Pathol 1997;50(5):401–406PubMedCrossRefGoogle Scholar
  5. 5.
    Choi J, Ou JH (2006) Mechanisms of liver injury. III Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290(5):G847–G851Google Scholar
  6. 6.
    Vidali M, Tripodi MF, Ivaldi A, et al. Interplay between oxidative stress and hepatic steatosis in the progression of chronic hepatitis C. J Hepatol 2008;48(3):399–406PubMedCrossRefGoogle Scholar
  7. 7.
    De Maria N, Colantoni A, Fagiuoli S, et al. Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic Biol Med 1996;21(3):291–295PubMedCrossRefGoogle Scholar
  8. 8.
    Mahmood S, Kawanaka M, Kamei A, et al. Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid Redox Signal 2004;6(1):19–24PubMedCrossRefGoogle Scholar
  9. 9.
    Romero FJ, Bosch-Morell F, Romero MJ, et al. Lipid peroxidation products and antioxidants in human disease. Environ Health Perspect 1998;106(Suppl 5):1229–1234PubMedCrossRefGoogle Scholar
  10. 10.
    Hui JM, Sud A, Farrell GC, et al. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology 2003;125(6):1695–1704PubMedCrossRefGoogle Scholar
  11. 11.
    van der Poorten D, George J (2008) Disease-specific mechanisms of fibrosis: hepatitis C virus and nonalcoholic steatohepatitis. Clin Liver Dis 12(4):805–824, ixGoogle Scholar
  12. 12.
    Seghrouchni I, Drai J, Bannier E, et al. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta 2002;321(1–2):89–96PubMedCrossRefGoogle Scholar
  13. 13.
    Romero-Gomez M, Del Mar Viloria M, Andrade RJ, et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005;128(3):636–641PubMedCrossRefGoogle Scholar
  14. 14.
    D’Souza R, Sabin CA, Foster GR. Insulin resistance plays a significant role in liver fibrosis in chronic hepatitis C and in the response to antiviral therapy. Am J Gastroenterol 2005;100(7):1509–1515PubMedCrossRefGoogle Scholar
  15. 15.
    Poustchi H, Negro F, Hui J, et al. Insulin resistance and response to therapy in patients infected with chronic hepatitis C virus genotypes 2 and 3. J Hepatol 2008;48(1):28–34PubMedCrossRefGoogle Scholar
  16. 16.
    Mitsuyoshi H, Itoh Y, Sumida Y, et al. Evidence of oxidative stress as a cofactor in the development of insulin resistance in patients with chronic hepatitis C. Hepatol Res 2008;38(4):348–353PubMedCrossRefGoogle Scholar
  17. 17.
    Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008;14(3–4):222–231PubMedGoogle Scholar
  18. 18.
    de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2008;582(1):97–105PubMedCrossRefGoogle Scholar
  19. 19.
    Hoehn KL, Salmon AB, Hohnen-Behrens C, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 2009;106(42):17787–17792PubMedCrossRefGoogle Scholar
  20. 20.
    Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11(1):81–128PubMedCrossRefGoogle Scholar
  21. 21.
    Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 1990;9(6):515–540PubMedCrossRefGoogle Scholar
  22. 22.
    Radikova Z, Koska J, Huckova M, et al. Insulin sensitivity indices: a proposal of cut-off points for simple identification of insulin-resistant subjects. Exp Clin Endocrinol Diabetes 2006;114(5):249–256PubMedCrossRefGoogle Scholar
  23. 23.
    Balkau B, Charles MA. Comment on the provisional report from the WHO consultation European Group for the Study of Insulin Resistance (EGIR). Diabet Med 1999;16(5):442–443PubMedCrossRefGoogle Scholar
  24. 24.
    H-W DJ. The A3243G Mitochondrial DNA Mutation: Contribution to Pathogenesis of Diabetes Mellitus. Sydney: University of Sydney; 1999Google Scholar
  25. 25.
    Sim AS, Salonikas C, Naidoo D, et al. Improved method for plasma malondialdehyde measurement by high-performance liquid chromatography using methyl malondialdehyde as an internal standard. J Chromatogr B Analyt Technol Biomed Life Sci 2003;785(2):337–344PubMedCrossRefGoogle Scholar
  26. 26.
    Toyo’oka T, Imai K. High-performance liquid chromatography and fluorometric detection of biologically important thiols, derivatized with ammonium 7-fluorobenzo-2-oxa-1, 3-diazole-4-sulphonate (SBD-F). J Chromatogr 1983;282:495–500PubMedCrossRefGoogle Scholar
  27. 27.
    Lee W, Hamernyik P, Hutchinson M, et al. Ascorbic acid in lymphocytes: cell preparation and liquid-chromatographic assay. Clin Chem 1982;28(10):2165–2169PubMedGoogle Scholar
  28. 28.
    Nilsson B, Johansson B, Jansson L, et al. Determination of plasma alpha-tocopherol by high-performance liquid chromatography. J Chromatogr 1978;145(1):169–172PubMedGoogle Scholar
  29. 29.
    Scheuer PJ. Classification of chronic viral hepatitis: a need for reassessment. J Hepatol 1991;13(3):372–374PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson JW. A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivar Behav Res 2000;35(1):1–19CrossRefGoogle Scholar
  31. 31.
    Cua IH, Hui JM, Kench JG, et al. Genotype-specific interactions of insulin resistance, steatosis, and fibrosis in chronic hepatitis C. Hepatology 2008;48(3):723–731PubMedCrossRefGoogle Scholar
  32. 32.
    Dalle-Donne I, Rossi R, Colombo R, et al. Biomarkers of oxidative damage in human disease. Clin Chem 2006;52(4):601–623PubMedCrossRefGoogle Scholar
  33. 33.
    Song F, Jia W, Yao Y, et al. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed type 2 diabetes. Clin Sci (Lond) 2007;112(12):599–606CrossRefGoogle Scholar
  34. 34.
    Grune T, Berger MM. Markers of oxidative stress in ICU clinical settings: present and future. Curr Opin Clin Nutr Metab Care 2007;10(6):712–717PubMedCrossRefGoogle Scholar
  35. 35.
    Romero-Gomez M. Insulin resistance and hepatitis C. World J Gastroenterol 2006;12(44):7075–7080PubMedGoogle Scholar
  36. 36.
    Serfaty L, Capeau J. Hepatitis C, insulin resistance and diabetes: clinical and pathogenic data. Liver Int 2009;29(Suppl 2):13–25PubMedCrossRefGoogle Scholar
  37. 37.
    Oliveira AC, Parise ER, Catarino RM, et al. Insulin resistance and not steatosis is associated with modifications in oxidative stress markers in chronic hepatitis C, non-3 genotype. Free Radic Res 2009;43(12):1187–1194PubMedCrossRefGoogle Scholar
  38. 38.
    Abdalla MY, Ahmad IM, Spitz DR, et al. Hepatitis C virus-core and non structural proteins lead to different effects on cellular antioxidant defenses. J Med Virol 2005;76(4):489–497PubMedCrossRefGoogle Scholar
  39. 39.
    Korenaga M, Wang T, Li Y, et al. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 2005;280(45):37481–37488PubMedCrossRefGoogle Scholar
  40. 40.
    Sheikh MY, Choi J, Qadri I, et al. Hepatitis C virus infection: molecular pathways to metabolic syndrome. Hepatology 2008;47(6):2127–2133PubMedCrossRefGoogle Scholar
  41. 41.
    Wang T, Weinman SA. Causes and consequences of mitochondrial reactive oxygen species generation in hepatitis C. J Gastroenterol Hepatol 2006;21(Suppl 3):S34–S37PubMedCrossRefGoogle Scholar
  42. 42.
    Aytug S, Reich D, Sapiro LE, et al. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology 2003;38(6):1384–1392PubMedGoogle Scholar
  43. 43.
    Evans JL. Antioxidants: do they have a role in the treatment of insulin resistance? Indian J Med Res 2007;125(3):355–372PubMedGoogle Scholar
  44. 44.
    Demircan N, Gurel A, Armutcu F et al. (2008) The evaluation of serum cystatin C, malondialdehyde, and total antioxidant status in patients with metabolic syndrome. Med Sci Monit 14(2):CR97–CR101Google Scholar
  45. 45.
    Yesilova Z, Yaman H, Oktenli C, et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease. Am J Gastroenterol 2005;100(4):850–855PubMedCrossRefGoogle Scholar
  46. 46.
    Sabuncu T, Vural H, Harma M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin Biochem 2001;34(5):407–413PubMedCrossRefGoogle Scholar
  47. 47.
    Gonzalez F, Rote NS, Minium J, et al. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 2006;91(1):336–340PubMedCrossRefGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2012

Authors and Affiliations

  • Said M. Hashemi
    • 1
  • David van der Poorten
    • 1
  • Francisco Barrera
    • 1
    • 2
  • Priyanka Bandara
    • 1
  • Ora Lux
    • 3
  • James Kench
    • 4
  • Jacob George
    • 1
  1. 1.Storr Liver Unit, Westmead Millennium InstituteUniversity of Sydney at Westmead HospitalSydneyAustralia
  2. 2.Departamento de GastroenterologíaPontificia Universidad CatólicaSantiagoChile
  3. 3.Department of Clinical ChemistryPrince of Wales HospitalSydneyAustralia
  4. 4.Department of Anatomical PathologyRoyal Prince Alfred HospitalSydneyAustralia

Personalised recommendations