Skip to main content

Advertisement

Log in

Oxidative stress is closely associated with insulin resistance in genotypes 1 and 3 chronic hepatitis C

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background

Chronic hepatitis C (CHC) infection is associated with insulin resistance and with oxidative stress, but the relationship between the two has not been thoroughly examined.

Purpose

To evaluate the association between insulin resistance and oxidative stress in CHC patients.

Method

In 115 CHC patients (68 with genotype 1 and 47 with genotype 3), the relationship between the serum concentration of malondialdehyde (MDA), a marker of oxidative stress and insulin resistance as defined by the homeostasis model (HOMA-IR) was examined.

Results

There was no significant difference in MDA levels between genotype 1- and genotype 3-infected subjects (12.882 vs. 12.426 ng/mL, p = 0.2). By univariate analysis, factors associated with HOMA-IR in both genotypes were oxidative stress as measured by MDA (p = 0.002), body mass index (BMI), portal activity, and fibrosis. Genotype-specific differences in HOMA-IR association were steatosis and triglycerides (TG) for genotype 1, and age and glutathione (GSH) for genotype 3. In a stepwise multiple linear regression analysis in both genotypes, MDA was a significant and independent predictor of HOMA-IR (p = 0.04). As expected, BMI and fibrosis were likewise independently correlated to HOMA-IR. In addition, MDA levels were higher (p < 0.001) and GSH levels were lower (p = 0.023) in insulin-resistant subjects compared to their insulin-sensitive counterparts.

Conclusions

It is concluded that in CHC, oxidative stress is an independent predictor of HOMA-IR, irrespective of virus genotype. Further studies on the role of oxidative stress in the development of insulin resistance in CHC are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHC:

Chronic hepatitis C

MDA:

Malondialdehyde

GSH:

Glutathione

HOMA-IR:

Homeostasis model assessment of insulin resistance

BMI:

Body mass index

WHR:

Waist/hip ratio

IR:

Insulin resistance

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

IR:

Insulin resistance

ROS:

Reactive oxygen species

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

GGT:

Gamma-glutamyl transpeptidase

T-chol:

Total cholesterol

HDL-C:

High density lipoprotein cholesterol

LDL-C:

Low density lipoprotein cholesterol

TG:

Triglycerides

HIV:

Human immunodeficiency virus

HPLC:

High performance liquid chromatography

SD:

Standard deviation

DNPH:

Dinitrophenylhydrazine

UV:

Ultraviolet

NS3:

Non-structural protein 3

NS5A:

Non-structural protein 5A

SOCS-3:

Suppressor of cytokine signaling-3

NF-κβ:

Nuclear factor-κβ

TNF-α:

Tumor necrosis factor-α

References

  1. Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 2005;7(7–8):1040–1052

    Article  CAS  Google Scholar 

  2. Cheeseman KH. Mechanisms and effects of lipid peroxidation. Mol Aspects Med 1993;14(3):191–197

    Article  CAS  Google Scholar 

  3. Romero MJ, Bosch-Morell F, Romero B, et al. Serum malodialdehyde: possible use for the clinical management of chronic hepatitis C patients. Free Radic Biol Med 1998;25(9):993–997

    Article  CAS  Google Scholar 

  4. Paradis V, Mathurin P, Kollinger M, et al. In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features. J Clin Pathol 1997;50(5):401–406

    Article  CAS  Google Scholar 

  5. Choi J, Ou JH (2006) Mechanisms of liver injury. III Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290(5):G847–G851

    Article  CAS  Google Scholar 

  6. Vidali M, Tripodi MF, Ivaldi A, et al. Interplay between oxidative stress and hepatic steatosis in the progression of chronic hepatitis C. J Hepatol 2008;48(3):399–406

    Article  CAS  Google Scholar 

  7. De Maria N, Colantoni A, Fagiuoli S, et al. Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic Biol Med 1996;21(3):291–295

    Article  Google Scholar 

  8. Mahmood S, Kawanaka M, Kamei A, et al. Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid Redox Signal 2004;6(1):19–24

    Article  CAS  Google Scholar 

  9. Romero FJ, Bosch-Morell F, Romero MJ, et al. Lipid peroxidation products and antioxidants in human disease. Environ Health Perspect 1998;106(Suppl 5):1229–1234

    Article  CAS  Google Scholar 

  10. Hui JM, Sud A, Farrell GC, et al. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology 2003;125(6):1695–1704

    Article  CAS  Google Scholar 

  11. van der Poorten D, George J (2008) Disease-specific mechanisms of fibrosis: hepatitis C virus and nonalcoholic steatohepatitis. Clin Liver Dis 12(4):805–824, ix

    Article  Google Scholar 

  12. Seghrouchni I, Drai J, Bannier E, et al. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta 2002;321(1–2):89–96

    Article  CAS  Google Scholar 

  13. Romero-Gomez M, Del Mar Viloria M, Andrade RJ, et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005;128(3):636–641

    Article  CAS  Google Scholar 

  14. D’Souza R, Sabin CA, Foster GR. Insulin resistance plays a significant role in liver fibrosis in chronic hepatitis C and in the response to antiviral therapy. Am J Gastroenterol 2005;100(7):1509–1515

    Article  Google Scholar 

  15. Poustchi H, Negro F, Hui J, et al. Insulin resistance and response to therapy in patients infected with chronic hepatitis C virus genotypes 2 and 3. J Hepatol 2008;48(1):28–34

    Article  CAS  Google Scholar 

  16. Mitsuyoshi H, Itoh Y, Sumida Y, et al. Evidence of oxidative stress as a cofactor in the development of insulin resistance in patients with chronic hepatitis C. Hepatol Res 2008;38(4):348–353

    Article  CAS  Google Scholar 

  17. Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008;14(3–4):222–231

    CAS  PubMed  PubMed Central  Google Scholar 

  18. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2008;582(1):97–105

    Article  Google Scholar 

  19. Hoehn KL, Salmon AB, Hohnen-Behrens C, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 2009;106(42):17787–17792

    Article  CAS  Google Scholar 

  20. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11(1):81–128

    Article  CAS  Google Scholar 

  21. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 1990;9(6):515–540

    Article  CAS  Google Scholar 

  22. Radikova Z, Koska J, Huckova M, et al. Insulin sensitivity indices: a proposal of cut-off points for simple identification of insulin-resistant subjects. Exp Clin Endocrinol Diabetes 2006;114(5):249–256

    Article  CAS  Google Scholar 

  23. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation European Group for the Study of Insulin Resistance (EGIR). Diabet Med 1999;16(5):442–443

    Article  CAS  Google Scholar 

  24. H-W DJ. The A3243G Mitochondrial DNA Mutation: Contribution to Pathogenesis of Diabetes Mellitus. Sydney: University of Sydney; 1999

    Google Scholar 

  25. Sim AS, Salonikas C, Naidoo D, et al. Improved method for plasma malondialdehyde measurement by high-performance liquid chromatography using methyl malondialdehyde as an internal standard. J Chromatogr B Analyt Technol Biomed Life Sci 2003;785(2):337–344

    Article  CAS  Google Scholar 

  26. Toyo’oka T, Imai K. High-performance liquid chromatography and fluorometric detection of biologically important thiols, derivatized with ammonium 7-fluorobenzo-2-oxa-1, 3-diazole-4-sulphonate (SBD-F). J Chromatogr 1983;282:495–500

    Article  Google Scholar 

  27. Lee W, Hamernyik P, Hutchinson M, et al. Ascorbic acid in lymphocytes: cell preparation and liquid-chromatographic assay. Clin Chem 1982;28(10):2165–2169

    CAS  PubMed  Google Scholar 

  28. Nilsson B, Johansson B, Jansson L, et al. Determination of plasma alpha-tocopherol by high-performance liquid chromatography. J Chromatogr 1978;145(1):169–172

    Article  CAS  Google Scholar 

  29. Scheuer PJ. Classification of chronic viral hepatitis: a need for reassessment. J Hepatol 1991;13(3):372–374

    Article  CAS  Google Scholar 

  30. Johnson JW. A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivar Behav Res 2000;35(1):1–19

    Article  CAS  Google Scholar 

  31. Cua IH, Hui JM, Kench JG, et al. Genotype-specific interactions of insulin resistance, steatosis, and fibrosis in chronic hepatitis C. Hepatology 2008;48(3):723–731

    Article  Google Scholar 

  32. Dalle-Donne I, Rossi R, Colombo R, et al. Biomarkers of oxidative damage in human disease. Clin Chem 2006;52(4):601–623

    Article  CAS  Google Scholar 

  33. Song F, Jia W, Yao Y, et al. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed type 2 diabetes. Clin Sci (Lond) 2007;112(12):599–606

    Article  CAS  Google Scholar 

  34. Grune T, Berger MM. Markers of oxidative stress in ICU clinical settings: present and future. Curr Opin Clin Nutr Metab Care 2007;10(6):712–717

    Article  CAS  Google Scholar 

  35. Romero-Gomez M. Insulin resistance and hepatitis C. World J Gastroenterol 2006;12(44):7075–7080

    Article  CAS  Google Scholar 

  36. Serfaty L, Capeau J. Hepatitis C, insulin resistance and diabetes: clinical and pathogenic data. Liver Int 2009;29(Suppl 2):13–25

    Article  CAS  Google Scholar 

  37. Oliveira AC, Parise ER, Catarino RM, et al. Insulin resistance and not steatosis is associated with modifications in oxidative stress markers in chronic hepatitis C, non-3 genotype. Free Radic Res 2009;43(12):1187–1194

    Article  CAS  Google Scholar 

  38. Abdalla MY, Ahmad IM, Spitz DR, et al. Hepatitis C virus-core and non structural proteins lead to different effects on cellular antioxidant defenses. J Med Virol 2005;76(4):489–497

    Article  CAS  Google Scholar 

  39. Korenaga M, Wang T, Li Y, et al. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 2005;280(45):37481–37488

    Article  CAS  Google Scholar 

  40. Sheikh MY, Choi J, Qadri I, et al. Hepatitis C virus infection: molecular pathways to metabolic syndrome. Hepatology 2008;47(6):2127–2133

    Article  CAS  Google Scholar 

  41. Wang T, Weinman SA. Causes and consequences of mitochondrial reactive oxygen species generation in hepatitis C. J Gastroenterol Hepatol 2006;21(Suppl 3):S34–S37

    Article  CAS  Google Scholar 

  42. Aytug S, Reich D, Sapiro LE, et al. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology 2003;38(6):1384–1392

    Article  CAS  Google Scholar 

  43. Evans JL. Antioxidants: do they have a role in the treatment of insulin resistance? Indian J Med Res 2007;125(3):355–372

    CAS  PubMed  Google Scholar 

  44. Demircan N, Gurel A, Armutcu F et al. (2008) The evaluation of serum cystatin C, malondialdehyde, and total antioxidant status in patients with metabolic syndrome. Med Sci Monit 14(2):CR97–CR101

    CAS  PubMed  Google Scholar 

  45. Yesilova Z, Yaman H, Oktenli C, et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease. Am J Gastroenterol 2005;100(4):850–855

    Article  CAS  Google Scholar 

  46. Sabuncu T, Vural H, Harma M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin Biochem 2001;34(5):407–413

    Article  CAS  Google Scholar 

  47. Gonzalez F, Rote NS, Minium J, et al. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 2006;91(1):336–340

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors had financial support from Robert W. Storr Bequest to the Sydney Medical Foundation and National Health and Medical Research Council (NHMRC). The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, S.M., van der Poorten, D., Barrera, F. et al. Oxidative stress is closely associated with insulin resistance in genotypes 1 and 3 chronic hepatitis C. Hepatol Int 7, 516–523 (2013). https://doi.org/10.1007/s12072-012-9400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-012-9400-5

Keywords

Navigation