Skip to main content
Log in

Investigation of transient conduction–radiation heat transfer in a square cavity using combination of LBM and FVM

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In this paper, the effect of surface radiation in a square cavity containing an absorbing, emitting and scattering medium with four heated boundaries is investigated, numerically. Lattice Boltzmann method (LBM) is used to solve the energy equation of a transient conduction–radiation heat transfer problem and the radiative heat transfer equation is solved using finite-volume method (FVM). In this work, two different heat flux boundary conditions are considered for the east wall: a uniform and a sinusoidally varying heat flux profile. The results show that as the value of conduction–radiation decreases, the dimensionless temperature in the medium increases. Also, it is clarified that, for an arbitrary value of the conduction–radiation parameter, the temperature decreases with decreasing scattering albedo. It is observed that when the boundaries reflect more, a higher temperature is achieved in the medium and on boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen S and Doolen G D 1998 Latice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30(1): 329–364

    Article  Google Scholar 

  2. Succi S 2001 The lattice Boltzmann equation: for fluid dynamics and beyond. UK: Clarendon Press

    MATH  Google Scholar 

  3. Yi H L, Yao F J and Tan H P 2016 Lattice Boltzmann model for a steady radiative transfer equation. Phys. Rev. E 90(2): 023312

    Article  MathSciNet  Google Scholar 

  4. Keshtkar M M and Amiri B 2018 Numerical simulation of radiative–conductive heat transfer in an enclosure with an isotherm obstacle. Heat Transf. Eng. 39(1): 72–83

    Article  Google Scholar 

  5. Mondal B and Chatterjee D 2012 Lattice Boltzmann simulation of heat conduction problems in non-isothermally heated enclosures. Heat Transf. Asian Res. 31(2): 127–144

    Google Scholar 

  6. Mondal B and Mishra S C 2009 The lattice Boltzmann method and the finite volume method applied to conduction–radiation problems with heat flux boundary conditions. Int. J. Numer. Methods Eng. 78(2): 172–195

    Article  MathSciNet  MATH  Google Scholar 

  7. Sajjadi H and Kefayati G R MHD turbulent and laminar natural convection in a square cavity utilizing Lattice Boltzmann Method. Heat Transf. Asian Res. 45(8): 795–814

  8. Baghban M, Mansouri S H and Shams Z 2014 Inverse radiation–conduction estimation of temperature-dependent emissivity using a combined method of genetic algorithm and conjugate gradient. J. Mech. Sci. Technol. 28(2): 739–745

    Article  Google Scholar 

  9. Siegel R 2001 Thermal radiation heat transfer, 4th edtion. USA: Taylor & Francis

    Google Scholar 

  10. Ho J R, Kuo C P, Jiaung W S and Twu C J 2002 Lattice Boltzmann scheme for hyperbolic heat conduction equation. Numer. Heat Transf. Part B Fundam. 41(6): 591–607

    Article  Google Scholar 

  11. Jiaung W S, Ho J R and Kuo C P 2001 Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Transf. Part B Fundam. 39(2): 167–187

    Article  Google Scholar 

  12. Fiveland W 1984 Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures. J. Heat Transf. 106(4): 699–706

    Article  Google Scholar 

  13. Truelove J 1988 Three-dimensional radiation in absorbing–emitting-scattering media using the discrete-ordinates approximation. J. Quant. Spectrosc. Radiat. Transf. 39(1): 27–31

    Article  Google Scholar 

  14. Fiveland W 1988 Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. J. Thermophys. Heat Transf. 2(4): 309–316

    Article  Google Scholar 

  15. Keshtkar M M, Gandjalikhan Nassab S A and Nasr M R J 2009 Heat transfer characteristics of a cylindrical porous radiant air heater under the influence of a two-dimensional axisymmetric radiative field. Proc. Inst. Mech. Eng. Part A J. Power Energy 223(8): 913–923

    Google Scholar 

  16. Keshtkar M M and Gandjalikhan Nassab S A 2009 Theoretical analysis of porous radiant burners under 2D radiation field using discrete ordinates method. J. Quant. Spectrosc. Radiat. Transf. 110(17): 1894–1907

    Article  Google Scholar 

  17. Ansari A and Gandjalikhan Nassab S A 2013 Forced convection of radiating gas over an inclined backward facing step using the blocked-off method. Therm. Sci. 17(3): 773–786

    Article  Google Scholar 

  18. Murakami S and Asako Y 2013 A finite volume method on distorted quadrilateral meshes for discretization of the energy equation’s conduction term. Heat Transf. Asian Res. 42(2): 163–184

    Google Scholar 

  19. Sun Y, Zhang, X and Howell J R 2016 Evaluation of three different radiative transfer equation solvers for combined conduction and radiation heat transfer. J. Quant. Spectrosc. Radiat. Transf. 184: 262–273

    Article  Google Scholar 

  20. Hunter B and Guo Z 2016 Improved treatment of anisotropic scattering in radiation transfer analysis using the finite volume method. Heat Transf. Eng. 37(4): 341–350

    Article  Google Scholar 

  21. Chai J C, Lee H S and Patankar S V 1994 Finite volume method for radiation heat transfer. J. Thermophys. Heat Transf. 8(3): 419–425

    Article  Google Scholar 

  22. Asghari A, Gandjalikhan Nassab S A and Ansari A 2015 Numerical study of combined radiation and turbulent mixed convection heat transfer in a compartment containing participating media. J. Mech. 31(4): 467–480

    Article  Google Scholar 

  23. Mishra S C and Sahai H 2014 Analysis of non-Fourier conduction and volumetric radiation in a concentric spherical shell using lattice Boltzmann method and finite volume method. Int. J. Heat Mass Transf. 68: 51–66

    Article  Google Scholar 

  24. Sun Y and Zhang X 2016 Analysis of transient conduction and radiation problems using lattice Boltzmann and finite volume methods. Int. J. Heat Mass Transf. 97: 611–617

    Article  Google Scholar 

  25. Mishra S C and Lankadasu A 2005 Transient conduction-radiation heat transfer in participating media using the lattice Boltzmann method and the discrete transfer method. Numer. Heat Transf. Part A Appl. 47(9): 935–954

    Article  Google Scholar 

  26. Mondal B and Mishra S C 2008 Lattice Boltzmann method applied to the solution of the energy equations of the transient conduction and radiation problems on non-uniform lattices. Int. J. Heat Mass Transf. 51(1): 68–82

    Article  MATH  Google Scholar 

  27. Mondal B and Mishra S C 2009 Analysis of 3-D conduction-radiation heat transfer using the Lattice Boltzmann method. J. Thermophys. Heat Transf. 23(1): 210–216

    Article  Google Scholar 

  28. Mishra S C, Poonia H, Vernekar R R and Das A K 2014 Lattice Boltzmann method applied to radiative transport analysis in a planar participating medium. Heat Transf. Eng. 35(15): 1267–1278

    Article  Google Scholar 

  29. Mondal B and Chatterjee D 2012 Lattice Boltzmann simulation of heat conduction problems in non-isothermally heated enclosures. Heat Transf. Asian Res. 41(2):127–144

    Google Scholar 

  30. Sun Y and Zhang X 2015 Analysis of transient conduction and radiation problems using the lattice Boltzmann and discrete ordinates methods. Numer. Heat Transf. Part A Appl. 68(6): 619–637

    Article  Google Scholar 

  31. Sasmal A and Mishra S C 2016 Analysis of conduction and radiation heat transfer in a differentially heated 2‐D square enclosure. Heat Transf. Asian Res. 46(4): 384–408

    Google Scholar 

  32. Mishra S C and Roy H K 2007 Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method. J. Comput. Phys. 223(1): 89–107

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Keshtkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshtkar, M.M., Talebizadehsardari, P. Investigation of transient conduction–radiation heat transfer in a square cavity using combination of LBM and FVM. Sādhanā 43, 64 (2018). https://doi.org/10.1007/s12046-018-0854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0854-6

Keywords

Navigation