Skip to main content
Log in

A direct-forcing IB-LBM implementation for thermal radiation in irregular geometries

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Radiative heat transfer in two-dimensional irregular geometries is analyzed using a direct-forcing immersed boundary-lattice Boltzmann method (IB-LBM) in participating media. In this paper, the radiative transfer equation (RTE) is discretized by the lattice Boltzmann method, which Yi et al. (Phys Rev E 94(2):023312, 2016) have recently presented. The D2Q9 scheme is used to solve the lattice Boltzmann equation (LBE) and the quadrature scheme \({S}_{\text{N}}\) to discrete the angular space. The irregular geometries’ boundaries are simulated by Immersed Boundary Method (IBM). The effect of boundaries that do not match the computational nodes is determined by adding a radiation density term to the LBE. Radiative heat flux distribution for different extinction coefficients are compared with the results obtained from the blocked-off domain method (BOM), embedded boundary method (EBM), and body-fitted grid method (BFM). Compared to the BFM, the proposed method has perfect accuracy, and for all considered problems, the average percent relative error in the estimation of radiative heat flux is between 0.4 and 9.8%. The results show that IBM can solve the difficulties of simulating curved boundaries efficiently. It is found that IB-LBM has been able to solve the problem of thermal radiation in irregular geometries for media with any optical depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(I\) :

Radiation intensity (W m−2 sr−1)

\(r\) :

Location vector \(\left( {\text{m}} \right)\)

\(s\) :

Unit direction vector

\(F\) :

Force (kg m s−2)

\({{S}}\) :

Source of thermal radiation

\(f\) :

Particle distribution function

\(T\) :

Temperature \(\left( {\text{K}} \right)\)

\(G\) :

Incident radiation (W m−2)

\(e\) :

Discrete particle velocity (m s−1)

\(c_{{\text{s}}}\) :

Sound speed

\(U\) :

Speed vector

\(t\) :

Time \(\left( {\text{s}} \right)\)

\(Q_{{\text{R}}}\) :

Radiation intensity

\(I_{{\text{b}}}\) :

Black body intensity

\(M\) :

Number of discrete directions

\(h\) :

Eulerian mesh width

\(D\) :

Interface function

\(\vec{x}_{\text{ij}}\) :

Eulerian position

\(\vec{x}_{{{\text{bou}}}}\) :

Lagrangian position

\(\beta\) :

Extinction coefficient \(\left( {{\text{m}}^{ - 1} } \right)\)

\(\mu\),\({ }\eta\), \(\xi\) :

Directional cosines in x, y, and z

\(\tau\) :

Relaxation time

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\sigma\) :

Stefan–Boltzmann constant \(\left( { = 5.67 \times 10^{ - 8} {\text{ W}}\, {\text{m}}^{ - 2} \,{\text{K}}^{ - 4} } \right)\)

\(\omega\) :

The equilibrium distribution function’s masses

\(\overline{\omega }\) :

The source term distribution function’s masses

\(\phi\) :

Dirac delta function

\({\Delta }s\) :

Arc length of the boundary segment

\({\text{bou, b}}\) :

Boundary

\({\text{w}}\) :

Wall

\({\text{k}}\) :

Discrete direction for DOM

\({\text{d}}\) :

Desired

\({\text{i}}\) :

Discrete direction for LBM

\({\text{eq}}\) :

Equilibrium

\({\text{noQ}}_{{\text{R}}}\) :

No radiation density source

References

  1. Yi H-L, Yao F-J, Tan H-P. Lattice Boltzmann model for a steady radiative transfer equation. Phys Rev E. 2016;94(2):023312.

    Article  PubMed  Google Scholar 

  2. Zabihi M, Lari K, Amiri H. Comparison of the blocked-off and embedded boundary methods in radiative heat transfer problems in 2D complex enclosures at radiative equilibrium. J Mech Sci Technol. 2017;31:3539–51.

    Article  Google Scholar 

  3. Byun DY, Baek SW, Kim MY. Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments. Numer Heat Transf Part A Appl. 2003;43:807–25.

    Article  Google Scholar 

  4. Amiri H, Mansouri S, Coelho P. Application of the modified discrete ordinates method with the concept of blocked-off region to irregular geometries. Int J Therm Sci. 2011;50:515–24.

    Article  Google Scholar 

  5. Lari K, Nassab SAG. Modeling of the conjugate radiation and conduction problem in a 3-D complex multi-burner furnace. Therm Sci. 2012;16:1187–200.

    Article  Google Scholar 

  6. Howell LH, Beckner VE. Discrete ordinates algorithm for domains with embedded boundaries. J Thermophys Heat Transf. 1997;11:549–55.

    Article  CAS  Google Scholar 

  7. Łapka P, Furmański P. Immersed boundary method for radiative heat transfer problems in nongray media with complex internal and external boundaries. J Heat Transf. 2017;139:022702.

    Article  CAS  Google Scholar 

  8. Liu J, Shang H, Chen Y, Wang T. Prediction of radiative transfer in general body-fitted coordinates. Numer Heat Transf Part B Fundam. 1997;31:423–39.

    Article  Google Scholar 

  9. Baek SW, Kim MY, Kim JS. Nonorthogonal finite-volume solutions of radiative heat transfer in a three-dimensional enclosure. Numer Heat Transf Part B Fundam. 1998;34:419–37.

    Article  CAS  Google Scholar 

  10. Chui E, Raithby G. Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer Heat Transf Part B Fundam. 1993;23:269–88.

    Article  CAS  Google Scholar 

  11. Chai JC, Parthasarathy G, Lee HS, Patankar SV. Finite volume radiative heat transfer procedure for irregular geometries. J Thermophys Heat Transf. 1995;9:410–5.

    Article  CAS  Google Scholar 

  12. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Ali AO. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2020;140:1121–45.

    Article  CAS  Google Scholar 

  13. Yousefzadeh S, Rajabi H, Ghajari N, Sarafraz MM, Ali Akbari O, Goodarzi M. Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. J Therm Anal Calorim. 2020;140:2779–803.

    Article  CAS  Google Scholar 

  14. Goodarzi H, Ali Akbari O, Sarafraz MM, Mokhtari Karchegani M, Safaei MR, Ahmadi Sheikh Shabani G. Numerical simulation of natural convection heat transfer of nanofluid with Cu, MWCNT, and Al2O3 nanoparticles in a cavity with different aspect ratios. J Therm Sci Eng Appl. 2019;11(6):061020.

    Article  CAS  Google Scholar 

  15. Chai JC, Lee HS, Patankar SV. Treatment of irregular geometries using a Cartesian-coordinates-based discrete-ordinates method. Radiati Heat Transf Theory Appl. 1993;244:49–54.

    Google Scholar 

  16. Talukdar P. Discrete transfer method with the concept of blocked-off region for irregular geometries. J Quant Spectrosc Radiat Transf. 2006;98:238–48.

    Article  CAS  Google Scholar 

  17. Succi S. The lattice Boltzmann method for fluid dynamics and beyond. Oxford: Oxford University Press; 1998.

    Google Scholar 

  18. Sajjadi H, Atashafrooz M, Amiri Delouei A, Wang Y. The effect of indoor heating system location on particle deposition and convection heat transfer: DMRT-LBM. Comput Math Appl. 2021;86:90–105.

    Article  Google Scholar 

  19. Mohebbi R, Amiri Delouei A, Jamali A, Izadi M, Mohamad AA. Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: thermal lattice Boltzmann method. Phys A. 2019;525:642–56.

    Article  CAS  Google Scholar 

  20. Jalali A, Amiri Delouei A, Khorashadizadeh M, Golmohamadi AM, Karimnejad S. Mesoscopic simulation of forced convective heat transfer of Carreau-Yasuda fluid flow over an inclined square: temperature-dependent viscosity. J Appl Comput Mech. 2020;6(2):307–19.

    Google Scholar 

  21. Mishra SC, Roy HK. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method. J Comput Phys. 2007;223:89–107.

    Article  Google Scholar 

  22. Mishra SC, LankadasuA BeronovKN. Application ofthe latticeBoltzmann method for solving the energy equation of a 2-D transient conduction–radiation problem. Int J Heat Mass Transf. 2005;48(364):8–59.

    Google Scholar 

  23. Mishra SC, Kumar TP, Mondal B. Lattice Boltzmann method applied to the solution of energy equation of a radiation and non-Fourier heat conduction prob- lem. Numer Heat Transf Part A Appl. 2008;54:798–818.

    Article  Google Scholar 

  24. Asinari P, Mishra SC, Borchiellini R. A lattice Boltzmann formulation for the analysis of radiative heat transfer problems in a participating medium. Numer Heat Transf Part B Fundam. 2010;57:126–46.

    Article  CAS  Google Scholar 

  25. Mishra SC, Poonia H, Das AK, Asinari P, Borchiellini R. Analysis of conduction-radiation heat transfer in a 2d enclosure using the lattice boltzmann method. Numer Heat Transf Part A Appl. 2014;66:669–88.

    Article  CAS  Google Scholar 

  26. Ahmadi Tighchi H, Esfahani JA. Combined radiation/natural convection in a participating medium using novel lattice Boltzmann method. J Thermophys Heat Transf. 2017;31:563–74.

    Article  Google Scholar 

  27. Lakhi M, Safavinejad A. Numerical investigation of combined heat transfer (mixed convection-radiation) in 2D channel using the LBM. Int Commun Heat Mass Transf. 2021;126:105368.

    Article  Google Scholar 

  28. Lakhi M, Safavinejad A. Numerical investigation of combined force convective-radiative heat transfer in a horizontal channel with lattice Boltzmann method. J Therm Anal Calorim. 2021;146:1911–22.

    Article  CAS  Google Scholar 

  29. Peskin CS. Flow patterns around heart valves: a numerical method. J Comput Phys. 1972;10:252–71.

    Article  Google Scholar 

  30. Mohammadi M, Nassab SAG. Application of the immersed boundary method in solution of radiative heat transfer problems. J Quant Spectrosc Radiat Transf. 2021;260:107467.

    Article  CAS  Google Scholar 

  31. Mohammadi M, Nassab SAG. Solution of radiative-convective heat transfer in irregular geometries using hybrid lattice Boltzmann-finite volume and im- mersed boundary. Int Commun Heat Mass Transf. 2021;128:105595.

    Article  Google Scholar 

  32. Mittal R, Iaccarino G. Immersed boundary methods. Annu Rev Fluid Mech. 2005;37:239–61.

    Article  Google Scholar 

  33. Peskin CS. The immersed boundary method. Acta Numer. 2002;11:479–517.

    Article  Google Scholar 

  34. Feng ZG, Michaelides EE. Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys. 2005;202:20–51.

    Article  Google Scholar 

  35. Niu X, Shu C, Chew Y, Peng Y. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A. 2006;354:173–82.

    Article  CAS  Google Scholar 

  36. Tian FB, Luo H, Zhu L, Liao JC, Lu XY. An efficient immersed boundary-lat- tice Boltzmann method for the hydrodynamic interaction of elastic filaments. J Comput Phys. 2011;230:7266–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shu C, Liu N, Chew YT. A novel immersed boundary velocity correction–lattice Boltzmann method and its application to simulate flow past a circular cylinder. J Comput Phys. 2007;226:1607–22.

    Article  CAS  Google Scholar 

  38. Dupuis A, Chatelain P, Koumoutsakos P. An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. J Comput Phys. 2008;227:4486–98.

    Article  Google Scholar 

  39. Kang SK, Hassan YA. A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries. Int J Numer Methods Fluids. 2011;66:1132–58.

    Article  Google Scholar 

  40. Wu J, Shu C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys. 2009;228:1963–79.

    Article  CAS  Google Scholar 

  41. Lu J, Han H, Shi B, Guo Z. Immersed boundary lattice Boltzmann model based on multiple relaxation times. Phys Rev E. 2012;85:016711.

    Article  CAS  Google Scholar 

  42. Afra B, Amiri Delouei A, Mostafavi M, Tarokh A. Fluid-structure interaction for the flexible filament’s propulsion hanging in the free stream. J Mol Liq. 2021;323:114941.

    Article  CAS  Google Scholar 

  43. Wang Zh, Wei Y, Qian Y. A bounce back-immersed boundary-lattice Boltzmann model for curved boundary. Appl Math Model. 2020;81:428–40.

    Article  Google Scholar 

  44. Karimnejad S, Amiri Delouei A, Nazari M, Shahmardan MM, Mohamad AA. Sedimentation of elliptical particles using immersed boundary–lattice Boltzmann method: a complementary repulsive force model. J Mol Liq. 2018;262:180–93.

    Article  CAS  Google Scholar 

  45. Karimnejad S, Amiri Delouei A, Nazari M, Shahmardan MM, Rashidi MM, Wongwises S. Immersed boundary—thermal lattice Boltzmann method for the moving simulation of non-isothermal elliptical particles. J Therm Anal Calorim. 2022;138(6):4003–17.

    Article  CAS  Google Scholar 

  46. Abaszadeh M, Safavinejad A, Amiri Delouei A, Amiri H. Analysis of radiative heat transfer in two-dimensional irregular geometries by developed immersed boundary–lattice Boltzmann method. J Quant Spectros Radiat Transf. 2022;280:108086.

    Article  CAS  Google Scholar 

  47. Modest MF. Radiative heat transfer. 2nd ed. New York: Academic Press; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Amiri Delouei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abaszadeh, M., Safavinejad, A., Amiri, H. et al. A direct-forcing IB-LBM implementation for thermal radiation in irregular geometries. J Therm Anal Calorim 147, 11169–11181 (2022). https://doi.org/10.1007/s10973-022-11328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11328-1

Keywords

Navigation