Reactions of 4-diphenylphosphino benzoic acid with organotin oxides and -oxy-hydroxide

  • Ramakirushnan Suriya Narayanan
  • Pakkirisamy Thilagar
  • Joydev Acharya
  • Pawan Kumar
  • Doddapuneni Krishna Rao
  • Vadapalli Chandrasekhar
  • Anukul Jana
Regular Article


The reactions of p-diphenylphosphinobenzoic acid (LCOOH) with various organotin precursors have been carried out. Accordingly, the reaction of \([n\hbox {-BuSn(O)}(\hbox {OH}]_{\mathrm{n}}\) with LCOOH afforded the hexameric compound, \([n\hbox {-BuSn(O)O}_{2}\hbox {C}\)\(\hbox {C}_{6}\hbox {H}_{4}\)\(p\hbox {-PPh}_{2}]_{6}\) (1). On the other hand, the reaction of LCOOH with \([n\hbox {-Bu}_{2}\hbox {SnO}]_{\mathrm{n}}\) gave the tetrameric compound \([\{{n}\hbox {-Bu}_{2}\hbox {SnO}_{2}\hbox {C}\)\(\hbox {C}_{6}\hbox {H}_{4}\)\(p\hbox {-PPh}_{2}\}_{2}\hbox {O}]_{2}\) (2). The 1-D coordination polymers \([\hbox {R}_{3}\hbox {SnO}_{2}\hbox {C}\)\(\hbox {C}_{6}\hbox {H}_{4}\)\(p\hbox {-}\hbox {P(O)Ph}_{2}]_{\mathrm{n}}\), \([\hbox {R} = n\hbox {-Bu}\) (3), \(\hbox {R} = \hbox {Ph}\) (4)] were prepared in the reaction of \([n\hbox {-Bu}_{3}\hbox {Sn}]_{2}\hbox {O}\) or \([\hbox {Ph}_{3}\hbox {Sn}]_{2}\hbox {O}\) with LCOOH. The compounds 14 were structurally characterized by multinuclear NMR spectroscopic and single crystal X-ray diffraction studies.

Graphical Abstract

SYNOPSIS The reactions of p-diphenylphosphinobenzoic acid with various organotin precursors have been shown to afford hexameric compound 1, tetrameric compound 2 and 1-D polymeric compounds 3 and 4. The compounds 14 were structurally characterized by multinuclear NMR spectroscopic and single crystal X-ray diffraction methods.


Organostannoxane multisite coordination ligand organotin compounds 1-D coordination polymer 



This work is supported by the Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana, India. VC is thankful to the Department of Science and Technology for a J. C. Bose fellowship.

Supplementary material

12039_2018_1493_MOESM1_ESM.pdf (199 kb)
Supplementary material 1 (pdf 199 KB)


  1. 1.
    Amouri H, Desmarets C and Moussa J 2012 Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration Chem. Rev. 112 2015CrossRefPubMedGoogle Scholar
  2. 2.
    Roesky HW, Haiduc I and Hosmane NS 2003 Organometallic Oxides of Main Group and Transition Elements Downsizing Inorganic Solids to Small Molecular Fragments Chem. Rev. 103 2579CrossRefPubMedGoogle Scholar
  3. 3.
    Chandrasekhar V, Nagendran S and Baskar V 2002 Organotin assemblies containing Sn-O bonds Coord. Chem. Rev. 235 1CrossRefGoogle Scholar
  4. 4.
    García-Zarracino R and Höpfl H 2005 Self-Assembly of Diorganotin(IV) Oxides (R = Me, \(n\)Bu, Ph) and 2,5-Pyridinedicarboxylic Acid to Polymeric and Trinuclear Macrocyclic Hybrids with Porous Solid-State Structures: Influence of Substituents and Solvent on the Supramolecular Structure J. Am. Chem. Soc.  127 3120CrossRefPubMedGoogle Scholar
  5. 5.
    Beckmann J, Dakternieks D, Duthie A, Lewcenko N A and Mitchell C 2004 Carbon dioxide fixation by the cooperative effect of organotin and organotellurium oxides Angew. Chem. Int. Ed. 43 6683CrossRefGoogle Scholar
  6. 6.
    Ma C and Sun J 2004 A novel self-assembling synthesis and crystal structure of 40-membered macrocyclic complex containing eight-tin Dalton Trans. 1785Google Scholar
  7. 7.
    Chandrasekhar V, Gopal K and Thilagar P 2007 Nanodimensional Organostannoxane Molecular Assemblies Acc. Chem. Res. 40 420CrossRefPubMedGoogle Scholar
  8. 8.
    Delavaux-Nicot, B, Kaeser A, Hahn U, Gegout A, Brandli P E, Duhayon C, Coppel Y, Saquet A and Nierengarten J-F 2008 Organotin chemistry for the preparation of fullerene-rich nanostructures J. Mater. Chem. 18 1547CrossRefGoogle Scholar
  9. 9.
    Kundu S, Chakraborty A, Mondal K and Chandrasekhar V 2014 Multi-Ruthenocene Assemblies on an Organostannoxane Platform. Supramolecular Signatures and Conversion to (Ru-Sn)\(\text{ O }_{2}\) Cryst. Growth Des. 14 861CrossRefGoogle Scholar
  10. 10.
    Kundu S, Metre R K, Yadav R, Sen P and Chandrasekhar V 2014 Multi-Pyrene Assemblies Supported on Stannoxane Frameworks: Synthesis, Structure and Photophysical Studies Chem. Asian J. 9 1403CrossRefPubMedGoogle Scholar
  11. 11.
    Chandrasekhar V, Thilagar P and Sasikumar P 2006 Multi-site coordination ligands assembled on organostannoxane supports J. Organomet. Chem.  691 1681CrossRefGoogle Scholar
  12. 12.
    Chandrasekhar V, Kundu S, Kumar J, Verma S, Gopal K, Chaturbedi A and Subramaniam K 2013 Supramolecular Signatures of Adenine-Containing Organostannoxane Assemblies Cryst. Growth Des. 13 1665CrossRefGoogle Scholar
  13. 13.
    Chandrasekhar V, Narayanan R S and Thilagar P 2009 Organostannoxane-Supported Palladium Nanoparticles. Highly Efficient Catalysts for Suzuki-Coupling Reactions Organometallics 28 5883CrossRefGoogle Scholar
  14. 14.
    Chandrasekhar V and Narayanan R S 2011 Organostannoxane-supported Pd(0) nanoparticles as efficient catalysts for Heck-coupling reactions Tetrahedron Lett. 52 3527CrossRefGoogle Scholar
  15. 15.
    Chandrasekhar V and Narayanan R S 2013 Organostannoxane-supported Pd(0) nanoparticles as an efficient catalytic system for alkyne dimerization Ind. J. Chem. 52A 1066Google Scholar
  16. 16.
    International Tables for X-Ray Crystallography 1952 Vol. III. (Birmingham: Kynoch Press)Google Scholar
  17. 17.
    Sheldrick G M 1999 In SAINT+, version 6.02 (Madison: Bruker AXS)Google Scholar
  18. 18.
    Sheldrick G M 1997 In SADABS, Empirical Absorption Correction Program (Germany: University of Göttingen)Google Scholar
  19. 19.
    CrysAlis PRO. 2014 (Yarnton, Oxfordshire: Agilent Technologies Ltd)Google Scholar
  20. 20.
    Sheldrick G M 2015 SHELXT – Integrated space-group and crystal-structure determination Acta Cryst. A71 3Google Scholar
  21. 21.
    Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst. C71 3Google Scholar
  22. 22.
    Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 OLEX2: a complete structure solution, refinement and analysis program J. Appl. Crystallogr. 42 339CrossRefGoogle Scholar
  23. 23.
    Muller P 2006 In Crystal Structure Refinement: A Crystallographer’s guide to SHELXL (New York: International Union of Crystallography and Oxford University Press) p.59.Google Scholar
  24. 24.
    Brandenburg K 2014 DIAMOND Version 3.2k, (Bonn: Crystal Impact GbR).Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabadIndia
  2. 2.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
  3. 3.Department of ChemistryIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations