Advertisement

Molecular Neurobiology

, Volume 53, Issue 3, pp 1794–1801 | Cite as

The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications

  • Xi Lan
  • Wenzhu Wang
  • Qiang Li
  • Jian Wang
Article

Abstract

Pinocembrin is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown anti-inflammatory and neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these pharmaceutical characteristics, pinocembrin has potential as a drug to treat ischemic stroke and other clinical conditions. In this review, we summarize its pharmacologic characteristics and discuss its mechanisms of action and potential therapeutic applications.

Keywords

Neuroinflammation Neuroprotection Pinocembrin Stroke 

Notes

Acknowledgments

This work was supported by an AHA Mid-Atlantic Affiliate Grant-in-Aid 13GRNT15730001 and NIH grants K01AG031926, R01NS078026, and R01AT007317. We thank Claire Levine, MS, ELS, for editorial assistance and the Wang lab members for insightful discussions.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Massaro CF, Katouli M, Grkovic T, Vu H, Quinn RJ, Heard TA, Carvalho C, Manley-Harris M et al (2014) Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia. doi: 10.1016/j.fitote.2014.03.024 PubMedGoogle Scholar
  2. 2.
    Danert FC, Zampini C, Ordonez R, Maldonado L, Bedascarrasbure E, Isla MI (2014) Nutritional and functional properties of aqueous and hydroalcoholic extracts from Argentinean propolis. Nat Prod Commun 9(2):167–170PubMedGoogle Scholar
  3. 3.
    Bertelli D, Papotti G, Bortolotti L, Marcazzan GL, Plessi M (2012) (1)H-NMR simultaneous identification of health-relevant compounds in propolis extracts. Phytochem Anal 23(3):260–266. doi: 10.1002/pca.1352 CrossRefPubMedGoogle Scholar
  4. 4.
    Tuchinda P, Reutrakul V, Claeson P, Pongprayoon U, Sematong T, Santisuk T, Taylor WC (2002) Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry 59(2):169–173CrossRefPubMedGoogle Scholar
  5. 5.
    Gao M, Zhu SY, Tan CB, Xu B, Zhang WC, Du GH (2010) Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats. J Asian Nat Prod Res 12(5):407–418. doi: 10.1080/10286020.2010.485129 CrossRefPubMedGoogle Scholar
  6. 6.
    Stashenko EE, Martinez JR, Ruiz CA, Arias G, Duran C, Salgar W, Cala M (2010) Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis. J Sep Sci 33(1):93–103. doi: 10.1002/jssc.200900452 CrossRefPubMedGoogle Scholar
  7. 7.
    Diaz Napal GN, Palacios SM (2013) Phytotoxicity of secondary metabolites isolated from Flourensia oolepis S.F.Blake. Chem Biodivers 10(7):1295–1304. doi: 10.1002/cbdv.201200204 CrossRefPubMedGoogle Scholar
  8. 8.
    Leonard E, Lim KH, Saw PN, Koffas MA (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73(12):3877–3886. doi: 10.1128/AEM. 00200-07 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Miyahisa I, Funa N, Ohnishi Y, Martens S, Moriguchi T, Horinouchi S (2006) Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl Microbiol Biotechnol 71(1):53–58. doi: 10.1007/s00253-005-0116-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Park SR, Yoon JA, Paik JH, Park JW, Jung WS, Ban YH, Kim EJ, Yoo YJ et al (2009) Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. J Biotechnol 141(3–4):181–188. doi: 10.1016/j.jbiotec.2009.03.013 CrossRefPubMedGoogle Scholar
  11. 11.
    Bremner PD, Meyer JJ (1998) Pinocembrin chalcone: an antibacterial compound from Helichrysum trilineatum. Planta Med 64(8):777. doi: 10.1055/s-2006-957585 CrossRefPubMedGoogle Scholar
  12. 12.
    Chang LS, Li CB, Qin N, Jin MN, Duan HQ (2012) Synthesis and antidiabetic activity of 5,7-dihydroxyflavonoids and analogs. Chem Biodivers 9(1):162–169. doi: 10.1002/cbdv.201100049 CrossRefPubMedGoogle Scholar
  13. 13.
    Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S (2005) Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68(4):498–504. doi: 10.1007/s00253-005-1916-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Wu J, Du G, Zhou J, Chen J (2013) Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55. doi: 10.1016/j.ymben.2012.11.009 CrossRefPubMedGoogle Scholar
  15. 15.
    Yuan Y, Yang QY, Tong YF, Chen F, Qi Y, Duan YB, Wu S (2008) Synthesis and enantiomeric resolution of (+/-)-pinocembrin. J Asian Nat Prod Res 10(9–10):999–1002. doi: 10.1080/10286020802240418 CrossRefPubMedGoogle Scholar
  16. 16.
    Rasul A, Millimouno FM, Ali Eltayb W, Ali M, Li J, Li X (2013) Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed Res Int 2013:379850. doi: 10.1155/2013/379850 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sayre CL, Takemoto JK, Martinez SE, Davies NM (2013) Chiral analytical method development and application to pre-clinical pharmacokinetics of pinocembrin. Biomed Chromatogr 27(6):681–684. doi: 10.1002/bmc.2853 CrossRefPubMedGoogle Scholar
  18. 18.
    Metzner J, Bekemeier H, Schneidewind EM, Wenzel U (1979) Pharmacokinetic studies of the propolis constituent pinocembrin in the rat (author’s transl). Pharmazie 34(3):185–187PubMedGoogle Scholar
  19. 19.
    Park YK, Koo MH, Abreu JA, Ikegaki M, Cury JA, Rosalen PL (1998) Antimicrobial activity of propolis on oral microorganisms. Curr Microbiol 36(1):24–28CrossRefPubMedGoogle Scholar
  20. 20.
    Yang ZH, Sun X, Qi Y, Mei C, Sun XB, Du GH (2012) Uptake characteristics of pinocembrin and its effect on p-glycoprotein at the blood-brain barrier in in vitro cell experiments. J Asian Nat Prod Res 14(1):14–21. doi: 10.1080/10286020.2011.620393 CrossRefPubMedGoogle Scholar
  21. 21.
    Yan B, Cao G, Sun T, Zhao X, Hu X, Yan J, Peng Y, Shi A et al (2014) Determination of pinocembrin in human plasma by solid-phase extraction and LC/MS/MS: application to pharmacokinetic studies. Biomed Chromatogr. doi: 10.1002/bmc.3186 Google Scholar
  22. 22.
    National Institutes of Health (2014) Phase II study of pinocembrin injection to treat ischemic stroke. http://www.clinicaltrials.gov/ct2/show/NCT02059785?term=pinocembrin&rank=1.
  23. 23.
    Yang Z, Liu R, Li X, Tian S, Liu Q, Du G (2009) Development and validation of a high-performance liquid chromatographic method for determination of pinocembrin in rat plasma: application to pharmacokinetic study. J Pharm Biomed Anal 49(5):1277–1281. doi: 10.1016/j.jpba.2009.02.030 CrossRefPubMedGoogle Scholar
  24. 24.
    Liu YL, Ho DK, Cassady JM, Cook VM, Baird WM (1992) Isolation of potential cancer chemopreventive agents from Eriodictyon californicum. J Nat Prod 55(3):357–363CrossRefPubMedGoogle Scholar
  25. 25.
    Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1(3):251–257CrossRefPubMedGoogle Scholar
  26. 26.
    Kaneko M, Hwang EI, Ohnishi Y, Horinouchi S (2003) Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 30(8):456–461. doi: 10.1007/s10295-003-0061-1 CrossRefPubMedGoogle Scholar
  27. 27.
    Yan Y, Kohli A, Koffas MA (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71(9):5610–5613. doi: 10.1128/AEM. 71.9.5610-5613.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim BG, Lee H, Ahn JH (2014) Biosynthesis of pinocembrin from glucose using engineered Escherichia coli. J Microbiol Biotechnol 24(11):1536–1541CrossRefPubMedGoogle Scholar
  29. 29.
    Gao M, Liu R, Zhu SY, Du GH (2008) Acute neurovascular unit protective action of pinocembrin against permanent cerebral ischemia in rats. J Asian Nat Prod Res 10(5–6):551–558. doi: 10.1080/10286020801966955 CrossRefPubMedGoogle Scholar
  30. 30.
    Liu R, Gao M, Yang ZH, Du GH (2008) Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia-reperfusion both in vivo and in vitro. Brain Res 1216:104–115. doi: 10.1016/j.brainres.2008.03.049 CrossRefPubMedGoogle Scholar
  31. 31.
    Wu CX, Liu R, Gao M, Zhao G, Wu S, Wu CF, Du GH (2013) Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis. Neurosci Lett 546:57–62. doi: 10.1016/j.neulet.2013.04.060 CrossRefPubMedGoogle Scholar
  32. 32.
    Meng F, Liu R, Gao M, Wang Y, Yu X, Xuan Z, Sun J, Yang F et al (2011) Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats. Brain Res 1391:93–101. doi: 10.1016/j.brainres.2011.03.010 CrossRefPubMedGoogle Scholar
  33. 33.
    Shi LL, Chen BN, Gao M, Zhang HA, Li YJ, Wang L, Du GH (2011) The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sci 88(11–12):521–528. doi: 10.1016/j.lfs.2011.01.011 CrossRefPubMedGoogle Scholar
  34. 34.
    Gao M, Zhang WC, Liu QS, Hu JJ, Liu GT, Du GH (2008) Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. Eur J Pharmacol 591(1–3):73–79. doi: 10.1016/j.ejphar.2008.06.071 CrossRefPubMedGoogle Scholar
  35. 35.
    Liu R, Li JZ, Song JK, Zhou D, Huang C, Bai XY, Xie T, Zhang X et al (2014) Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiol Aging 35(6):1275–1285. doi: 10.1016/j.neurobiolaging.2013.12.031 CrossRefPubMedGoogle Scholar
  36. 36.
    Liu R, Wu CX, Zhou D, Yang F, Tian S, Zhang L, Zhang TT, Du GH (2012) Pinocembrin protects against beta-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med 10:105. doi: 10.1186/1741-7015-10-105 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang N, Qin S, Wang M, Chen B, Yuan N, Fang Y, Yao S, Jiao P et al (2013) Pinocembrin, a major flavonoid in propolis, improves the biological functions of EPCs derived from rat bone marrow through the PI3K-eNOS-NO signaling pathway. Cytotechnology 65(4):541–551. doi: 10.1007/s10616-012-9502-x CrossRefPubMedGoogle Scholar
  38. 38.
    Li L, Yang HG, Yuan TY, Zhao Y, Du GH (2013) Rho kinase inhibition activity of pinocembrin in rat aortic rings contracted by angiotensin II. Chin J Nat Med 11(3):258–263. doi: 10.1016/S1875-5364(13)60025-4 CrossRefPubMedGoogle Scholar
  39. 39.
    Soromou LW, Chu X, Jiang L, Wei M, Huo M, Chen N, Guan S, Yang X et al (2012) In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol 14(1):66–74. doi: 10.1016/j.intimp.2012.06.009 CrossRefPubMedGoogle Scholar
  40. 40.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2015) Executive summary: heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):434–441. doi: 10.1161/CIR.0000000000000157 CrossRefGoogle Scholar
  41. 41.
    Izuta H, Shimazawa M, Tazawa S, Araki Y, Mishima S, Hara H (2008) Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J Agric Food Chem 56(19):8944–8953. doi: 10.1021/jf8014206 CrossRefPubMedGoogle Scholar
  42. 42.
    Wang SB, Pang XB, Gao M, Fang LH, Du GH (2013) Pinocembrin protects rats against cerebral ischemic damage through soluble epoxide hydrolase and epoxyeicosatrienoic acids. Chin J Nat Med 11(3):207–213. doi: 10.1016/S1875-5364(13)60018-7 CrossRefPubMedGoogle Scholar
  43. 43.
    Iliff JJ, Alkayed NJ (2009) Soluble epoxide hydrolase inhibition: targeting multiple mechanisms of ischemic brain injury with a single agent. Future Neurol 4(2):179–199CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK (1999) Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285(5431):1276–1279CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Capdevila JH, Falck JR (2001) The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation. Biochem Biophys Res Commun 285(3):571–576. doi: 10.1006/bbrc.2001.5167 CrossRefPubMedGoogle Scholar
  46. 46.
    Imig JD, Simpkins AN, Renic M, Harder DR (2011) Cytochrome P450 eicosanoids and cerebral vascular function. Expert Rev Mol Med 13:e7. doi: 10.1017/S1462399411001773 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bellien J, Joannides R (2013) Epoxyeicosatrienoic acid pathway in human health and diseases. J Cardiovasc Pharmacol 61(3):188–196. doi: 10.1097/FJC.0b013e318273b007 CrossRefPubMedGoogle Scholar
  48. 48.
    Sura P, Sura R, Enayetallah AE, Grant DF (2008) Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem 56(6):551–559. doi: 10.1369/jhc.2008.950659 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jouihan SA, Zuloaga KL, Zhang W, Shangraw RE, Krasnow SM, Marks DL, Alkayed NJ (2013) Role of soluble epoxide hydrolase in exacerbation of stroke by streptozotocin-induced type 1 diabetes mellitus. J Cereb Blood Flow Metab 33(10):1650–1656. doi: 10.1038/jcbfm.2013.130 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang W, Koerner IP, Noppens R, Grafe M, Tsai HJ, Morisseau C, Luria A, Hammock BD et al (2007) Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab 27(12):1931–1940. doi: 10.1038/sj.jcbfm.9600494 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE, Koop DR et al (2008) Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 39(7):2073–2078. doi: 10.1161/STROKEAHA.107.508325 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shaik JS, Ahmad M, Li W, Rose ME, Foley LM, Hitchens TK, Graham SH, Hwang SH et al (2013) Soluble epoxide hydrolase inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is neuroprotective in rat model of ischemic stroke. Am J Physiol Heart Circ Physiol 305(11):H1605–H1613. doi: 10.1152/ajpheart.00471.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Brenneis C, Sisignano M, Coste O, Altenrath K, Fischer MJ, Angioni C, Fleming I, Brandes RP et al (2011) Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation. Mol Pain 7:78. doi: 10.1186/1744-8069-7-78 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Boudreau DM, Guzauskas GF, Chen E, Lalla D, Tayama D, Fagan SC, Veenstra DL (2014) Cost-effectiveness of recombinant tissue-type plasminogen activator within 3 hours of acute ischemic stroke: current evidence. Stroke 45(10):3032–3039. doi: 10.1161/STROKEAHA.114.005852 CrossRefPubMedGoogle Scholar
  55. 55.
    Wang Y, Gao J, Miao Y, Cui Q, Zhao W, Zhang J, Wang H (2014) Pinocembrin protects SH-SY5Y cells against MPP(+)-induced neurotoxicity through the mitochondrial apoptotic pathway. J Mol Neurosci 53(4):537–545. doi: 10.1007/s12031-013-0219-x CrossRefPubMedGoogle Scholar
  56. 56.
    Jin X, Liu Q, Jia L, Li M, Wang X (2014) Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol. doi: 10.1007/s10571-014-0128-8 Google Scholar
  57. 57.
    Sang H, Yuan N, Yao S, Li F, Wang J, Fang Y, Qin S (2012) Inhibitory effect of the combination therapy of simvastatin and pinocembrin on atherosclerosis in ApoE-deficient mice. Lipids Health Dis 11:166. doi: 10.1186/1476-511X-11-166 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Soromou LW, Jiang L, Wei M, Chen N, Huo M, Chu X, Zhong W, Wu Q et al (2014) Protection of mice against lipopolysaccharide-induced endotoxic shock by pinocembrin is correlated with regulation of cytokine secretion. J Immunotoxicol 11(1):56–61. doi: 10.3109/1547691X.2013.792886 CrossRefPubMedGoogle Scholar
  59. 59.
    Metzner J, Schneidewind EM, Friedrich E (1977) Effect of propolis and pinocembrin on fungi. Pharmazie 32(11):730PubMedGoogle Scholar
  60. 60.
    Sala A, Recio MC, Schinella GR, Manez S, Giner RM, Cerda-Nicolas M, Rosi JL (2003) Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur J Pharmacol 461(1):53–61CrossRefPubMedGoogle Scholar
  61. 61.
    Katerere DR, Gray AI, Nash RJ, Waigh RD (2012) Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia 83(5):932–940. doi: 10.1016/j.fitote.2012.04.011 CrossRefPubMedGoogle Scholar
  62. 62.
    Metzner J, Schneidewind EM (1978) Effect of pinocembrin on the course of experimental candida infections in mice. Mykosen 21(8):257–262CrossRefPubMedGoogle Scholar
  63. 63.
    Metzner J, Bekemeier H, Paintz M, Schneidewind E (1979) On the antimicrobial activity of propolis and propolis constituents (author's transl). Pharmazie 34(2):97–102PubMedGoogle Scholar
  64. 64.
    Lopez A, Ming DS, Towers GH (2002) Antifungal activity of benzoic acid derivatives from Piper lanceaefolium. J Nat Prod 65(1):62–64CrossRefPubMedGoogle Scholar
  65. 65.
    Uzel A, Sorkun K, Oncag O, Cogulu D, Gencay O, Salih B (2005) Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res 160(2):189–195CrossRefPubMedGoogle Scholar
  66. 66.
    Soromou LW, Zhang Y, Cui Y, Wei M, Chen N, Yang X, Huo M, Balde A et al (2013) Subinhibitory concentrations of pinocembrin exert anti-Staphylococcus aureus activity by reducing alpha-toxin expression. J Appl Microbiol 115(1):41–49. doi: 10.1111/jam.12221 CrossRefPubMedGoogle Scholar
  67. 67.
    Peralta MA, Calise M, Fornari MC, Ortega MG, Diez RA, Cabrera JL, Perez C (2012) A prenylated flavanone from Dalea elegans inhibits rhodamine 6 G efflux and reverses fluconazole-resistance in Candida albicans. Planta Med 78(10):981–987. doi: 10.1055/s-0031-1298627 CrossRefPubMedGoogle Scholar
  68. 68.
    Estevinho L, Pereira AP, Moreira L, Dias LG, Pereira E (2008) Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 46(12):3774–3779. doi: 10.1016/j.fct.2008.09.062 CrossRefPubMedGoogle Scholar
  69. 69.
    Drewes SE, van Vuuren SF (2008) Antimicrobial acylphloroglucinols and dibenzyloxy flavonoids from flowers of Helichrysum gymnocomum. Phytochemistry 69(8):1745–1749. doi: 10.1016/j.phytochem.2008.02.022 CrossRefPubMedGoogle Scholar
  70. 70.
    Hegazi AG, Abd El Hady FK, Abd Allah FA (2000) Chemical composition and antimicrobial activity of European propolis. Z Naturforsch C 55(1–2):70–75PubMedGoogle Scholar
  71. 71.
    Barrientos L, Herrera CL, Montenegro G, Ortega X, Veloz J, Alvear M, Cuevas A, Saavedra N et al (2013) Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Braz J Microbiol 44(2):577–585. doi: 10.1590/S1517-83822013000200038 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ruddock PS, Charland M, Ramirez S, Lopez A, Neil Towers GH, Arnason JT, Liao M, Dillon JA (2011) Antimicrobial activity of flavonoids from Piper lanceaefolium and other Colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae. Sex Transm Dis 38(2):82–88. doi: 10.1097/OLQ.0b013e3181f0bdbd CrossRefPubMedGoogle Scholar
  73. 73.
    Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92(4):463–477CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Anesthesiology and Critical Care MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations