Skip to main content
Log in

Adenosine A1 Receptor-Dependent Antinociception Induced by Inosine in Mice: Pharmacological, Genetic and Biochemical Aspects

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inosine is an endogenous nucleoside that has anti-inflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosine-induced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. Inosine antinociception was evaluated using the formalin test in mice. An A1R-selective antagonist (DPCPX), A1R knockout mice (gene deletion) and mice with A1R reduced expression (antisense oligonucleotides) were used to assess the role of A1Rs in the antinociceptive action of inosine. Binding assays were performed to compare the affinity of inosine and adenosine for A1Rs. Finally, the role of adenosine and inosine breakdown was assessed using deoxycoformycin (DCF) and forodesine (FDS) as enzymatic inhibitors of adenosine deaminase and purine nucleoside phosphorylase, respectively. Inosine induced antinociception in the formalin test when given by systemic, spinal and peripheral routes. Systemically, inosine exhibited a potency similar to adenosine, and its effects were inhibited by DPCPX. Inosine did not induce antinociception in A1R knockout mice or in mice with reduced A1R expression. In binding studies, inosine bound to A1Rs with an affinity similar to adenosine. DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haskó G, Sitkovsky MV, Szabo C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25:152–157

    Article  PubMed  Google Scholar 

  2. Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17:188–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  CAS  PubMed  Google Scholar 

  4. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  5. Nascimento FP, Figueredo SM, Marcon R, Martins DF, Macedo SJ Jr, Lima DA, Almeida RC, Ostroski RM, Rodrigues AL, Santos ARS (2010) Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J Pharmacol Exp Ther 334:590–598

    Article  CAS  PubMed  Google Scholar 

  6. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets-what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  CAS  PubMed  Google Scholar 

  9. Dickenson AH, Suzuki R, Reeve AJ (2000) Adenosine as a potential analgesic target in inflammatory and neuropathic pains. CNS Drugs 13:77–85

    Article  CAS  Google Scholar 

  10. Burnstock G, Sawynok J (2010) Adenosine triphosphate and adenosine receptors and pain. In: Beaulieu P, Lussier D, Porreca F, Dickenson AH (eds) Pharmacology of Pain, IASP Press, 303–326

  11. Haskó G, Kuhel DG, Németh ZH, Mabley JG, Stachlewitz RF, Virág L, Lohinai Z, Southan GJ, Salzman AL, Szabó C (2000) Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J Immunol 164:1013–1019

    Article  PubMed  Google Scholar 

  12. Garcia Soriano F, Liaudet L, Marton A, Haskó G, Batista Lorigados C, Deitch EA, Szabó C (2001) Inosine improves gut permeability and vascular reactivity in endotoxic shock. Crit Care Med 29:703–708

    Article  CAS  PubMed  Google Scholar 

  13. Marton A, Pacher P, Murthy KG, Németh ZH, Haskó G, Szabó C (2001) Anti-inflammatory effects of inosine in human monocytes, neutrophils and epithelial cells in vitro. Int J Mol Med 8:617–621

    CAS  PubMed  Google Scholar 

  14. Yamagiwa T, Shimosegawa T, Satoh A, Kimura K, Sakai Y, Masamune A (2004) Inosine alleviates rat caerulein pancreatitis and pancreatitis-associated lung injury. J Gastroenterol 39:41–49

    Article  CAS  PubMed  Google Scholar 

  15. Schneider L, Pietschmann M, Hartwig W, Marcos SS, Hackert T, Gebhard MM, Uhl W, Büchler MW, Werner J (2006) Inosine reduces microcirculatory disturbance and inflammatory organ damage in experimental acute pancreatitis in rats. Am J Surg 191:510–514

    Article  CAS  PubMed  Google Scholar 

  16. Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102:4472–4478

    Article  CAS  PubMed  Google Scholar 

  17. Módis K, Gero D, Nagy N, Szoleczky P, Tóth ZD, Szabó C (2009) Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis. Br J Pharmacol 158:1565–1578

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rahimian R, Fakhfouri G, Daneshmand A, Mohammadi H, Bahremand A, Rasouli MR, Mousavizadeh K, Dehpour AR (2010) Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. Eur J Pharmacol 649:376–381

    Article  CAS  PubMed  Google Scholar 

  19. da Rocha LF, de Oliveira AP, Accetturi BG, de Oliveira MI, Domingos HV, de Almeida CD, de Lima WT, Santos ARS (2013) Anti-inflammatory effects of inosine in allergic lung inflammation in mice: evidence for the participation of adenosine A(2A) and A (3) receptors. Purinergic Signal 9:325–336

    Article  Google Scholar 

  20. Assaife-Lopes N, de Sá Pinheiro AA, Leão-Ferreira LR, Caruso-Neves C (2009) Inhibition of renal Na+-ATPase activity by inosine is mediated by A1 receptor-induced inhibition of the cAMP signaling pathway. Arch Biochem Biophys 489:76–81

    Article  CAS  PubMed  Google Scholar 

  21. Macedo-Junior SJ, Nascimento FP, Luiz-Cerutti M, Santos ARS (2013) Role of pertussis toxin-sensitive G-protein, K+ channels, and voltage-gated Ca2+ channels in the antinociceptive effect of inosine. Purinergic Signal 9:51–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Reid AR, Sawynok J (2013) Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline. Eur J Pharmacol 698:213–219

    Article  CAS  PubMed  Google Scholar 

  24. Sawynok J, Reid AR (2012) Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A(1) receptors. Eur J Pharmacol 674:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Biggs TA, Myers RD (1997) Adenosine A1 receptor antisense infused in striatum of rats: actions on alcohol-induced locomotor impairment, blood alcohol, and body temperature. Alcohol 14:617–621

    Article  CAS  PubMed  Google Scholar 

  26. Dutra RC, Cola M, Leite DF, Bento AF, Claudino RF, Nascimento AF, Leal PC, Calixto JB (2011) Inhibitor of PI3Kgamma ameliorates TNBS-induced colitis in mice by affecting the functional activity of CD4+CD25+FoxP3+ regulatory T cells. Br J Pharmacol 163:358–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sousa VC, Assaife-Lopes N, Ribeiro JA, Pratt JA, Brett RR, Sebastião AM (2011) Regulation of hippocampal cannabinoid CB1 receptor actions by adenosine A1 receptors and chronic caffeine administration: implications for the effects of delta9-tetrahydrocannabinol on spatial memory. Neuropsychopharmacology 36:472–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cohen FR, Lazareno S, Birdsall NJ (1996) The affinity of adenosine for the high- and low-affinity states of the human adenosine A1 receptor. Eur J Pharmacol 309:111–114

    Article  CAS  PubMed  Google Scholar 

  29. Liz R, Pereira DF, Horst H, Dalmarco EM, Dalmarco JB, Simionatto EL, Pizzolatti MG, Girard D, Fröde TS (2011) Protected effect of Esenbeckia leiocarpa upon the inflammatory response induced by carrageenan in a murine air pouch model. Int Immuno Pharmacol 11:1991–1999

    Article  CAS  Google Scholar 

  30. Rittiner JE, Korboukh I, Hull-Ryde EA, Jin J, Janzen WP, Frye SV, Zylka MJ (2012) AMP is an adenosine A1 receptor agonist. J Biol Chem 287:5301–5309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Müller CE (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Hao JX, Fredholm BB, Schulte G, Wiesenfeld-Hallin Z, Xu XJ (2010) Peripheral adenosine A2A receptors are involved in carrageenan-induced mechanical hyperalgesia in mice. Neuroscience 170:923–928

    Article  CAS  PubMed  Google Scholar 

  33. Loram LC, Taylor FR, Strand KA, Harrison JA, Rzasalynn R, Sholar P, Rieger J, Maier SF, Watkins LR (2013) Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 33:112–122

    Article  CAS  PubMed  Google Scholar 

  34. Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  CAS  PubMed  Google Scholar 

  36. Souza LF, Horn AP, Gelain DP, Jardim FR, Lenz G, Bernard EA (2005) Extracellular inosine modulates ERK 1/2 and p38 phosphorylation in cultured Sertoli cells: possible participation in TNF-alpha modulation of ERK 1/2. Life Sci 77:3117–3126

    Article  CAS  PubMed  Google Scholar 

  37. Wu WP, Hao JX, Halldner L, Lövdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404

    Article  CAS  PubMed  Google Scholar 

  38. Luongo F, Guida F, Imperatore R, Napolitano F, Gatta L, Cristino L, Giordano C, Siniscalco D, Di Marzo V, Bellini G, Petreli R, Cappellacci L, Usiello A, de Novelis V, Rossi F, Maione S (2014) The A1 adenosine receptor as a new player in microglia physiology. Glia 62:122–132

    Article  CAS  PubMed  Google Scholar 

  39. Vincenzi F, Targa M, Romagnoli R, Merighi S, Gessi S, Baraldi PG, Borea PA (2014) Varani. TRR469, a potent A1 adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuro Pharmacol 81:6–14

    CAS  Google Scholar 

  40. Sowa N, Street SE, Vihko P, Zylka MJ (2010) Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-biphosphate. J Neurosci 30:10282–10293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Carruthers AM, Sellers LA, Jenkins DW, Jarvie EM, Feniuk W, Humphrey PP (2001) Adenosine A(1) receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 59:1533–1541

    CAS  PubMed  Google Scholar 

  42. Lima FO, Souza GR, Verri WA Jr, Parada CA, Ferreira SH, Cunha FQ, Cunha TM (2010) Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 151:506–515

    Article  CAS  PubMed  Google Scholar 

  43. Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448

    Article  CAS  PubMed  Google Scholar 

  44. Ibrisimovic E, Drobny H, Yang Q, Höfer T, Boehm S, Nanoff C (2012) Constitutive activity of the A2A adenosine receptor and compartmentalised cyclic AMP signalling fine-tune noradrenaline release. Purinergic Signal 8:677–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Mediero A, Perez-Aso M, Cronstein BN (2013) Activation of adenosine A2A receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFkappaB nuclear translocation. Br J Pharmacol 169:1372–1388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100:2849–2857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Keil GJ 2nd, DeLander GE (1994) Adenosine kinase and adenosine deaminase inhibition modulate spinal adenosine- and opioid agonist-induced antinociception in mice. Eur J Pharmacol 271:37–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Brazil. We wish to thank Bertil Fredholm (Karolinska Institute, Stockholm, Sweden) who supplied the initial adenosine A1R knockout mice (to JS), and whose laboratory performed polymerase chain reaction genotyping. Also, we would like to thank BioCryst Pharmaceuticals Inc. and Dr. ShantaBantia for the donation of forodesine. F.P.N., S.J.M.J., F.A.P. and A.R.S.S. thank the CNPq for their fellowship support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adair Roberto Soares Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, F.P., Macedo-Júnior, S.J., Pamplona, F.A. et al. Adenosine A1 Receptor-Dependent Antinociception Induced by Inosine in Mice: Pharmacological, Genetic and Biochemical Aspects. Mol Neurobiol 51, 1368–1378 (2015). https://doi.org/10.1007/s12035-014-8815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8815-5

Keywords

Navigation