Skip to main content
Log in

The role of peripheral adenosine receptors in glutamate-induced pain nociceptive behavior

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The role of peripheral adenosine receptors in pain is a controversial issue and seems to be quite different from the roles of spinal and central adenosine receptors. The present study is aimed at clarifying the role of these receptors in peripheral nociception. To clarify this, studies were done on Swiss mice with adenosine receptor agonists and antagonists. Nociceptive behavior was induced by subcutaneous injection of glutamate (10 μmol) into the ventral surface of the hind paw of mice. Statistical analyses were performed by one-way ANOVA followed by the Student-Newman-Keuls post hoc test. Results showed that intraplantar (i.pl.) administration of N6-cyclohexyl-adenosine (CHA), an adenosine A1 receptor agonist, at 1 or 10 μg/paw significantly reduced glutamate-induced nociception (p<0.01 and p<0.001 vs. vehicle, respectively, n=8−10). In contrast, i.pl. injection of hydrochloride hydrate (CGS21680, an adenosine A2A receptor agonist) (1 μg/paw) induced a significant increase in glutamate-induced nociception compared to the vehicle (p<0.05, n=8), while 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, an adenosine A2A receptor antagonist) (20 μg/paw) caused a significant reduction (p<0.05, n=7−8). There were no significant effects on i.pl. administration of four additional adenosine receptor drugs—8-cyclopentyl-1,3-dipropylxanthine (DPCPX, an A1 antagonist, 1–10 μg/paw), N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA, an A2B agonist, 1–100 μg/paw), alloxazine (an A2B antagonist, 0.1–3 μg/paw), and 2-hexyn-1-yl-N(6)-methyladenosine (HEMADO) (an A3 agonist, 1–100 μg/paw) (p>0.05 vs. vehicle for all tests). We also found that prior administration of DPCPX (3 μg/paw) significantly blocked the anti-nociceptive effect of CHA (1 μg/paw) (p<0.05, n=7–9). Similarly, ZM241385 (20 μg/paw) administered prior to CGS21680 (1 μg/paw) significantly blocked CGS21680-induced exacerbation of nociception (p<0.05, n=8). Finally, inosine (10 and 100 μg/paw), a novel endogenous adenosine A1 receptor agonist recently reported by our research group, was also able to reduce glutamate-induced nociception (p<0.001 vs. vehicle, n=7–8). Interestingly, as an A1 adenosine receptor agonist, the inosine effect was significantly blocked by the A1 antagonist DPCPX (3 μg/paw) (p<0.05, n=7−9) but not by the A2A antagonist ZM241385 (10 μg/paw, p>0.05). In summary, these results demonstrate for the first time that i.pl administration of inosine induces an anti-nociceptive effect, similar to that elicited by CHA and possibly mediated by peripheral adenosine A1 receptor activation. Moreover, our results suggest that peripheral adenosine A2A receptor activation presents a pro-nociceptive effect, exacerbating glutamate-induced nociception independent of inosine-induced anti-nociceptive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borea PA, Varani K, Vincenzi F et al (2014) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67:74–102

    Article  Google Scholar 

  2. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98:1591–1625

    Article  CAS  PubMed  Google Scholar 

  3. Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience 3:1–18

    Article  Google Scholar 

  4. Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C (2003) Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 121:907–916

    Article  CAS  PubMed  Google Scholar 

  5. Ribeiro JA, Sebastiao AM, Mendoca A (2003) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  Google Scholar 

  6. Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17:1071–1082

    Article  CAS  PubMed  Google Scholar 

  7. Popoli P, Pepponi R (2012) Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS Neurol Disord Drug Targets 11:644–674

    Article  Google Scholar 

  8. Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Gonçalves N, Cunha RA (2013) Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 10. https://doi.org/10.1186/1742-2094-10-16

  9. Maione S, de Novellis V, Cappellacci L, Palazzo E (2007) The antinociceptive effect of 2-chloro-2’-C-methyl-N6-cyclopentyladenosine (2’-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat. Pain 131:281–292

    Article  CAS  PubMed  Google Scholar 

  10. Gong QJ, Li YY, Xin WJ, Wei XH, Cui Y, Wang J, Liu Y, Liu CC, Li YY, Liu XG (2010) Differential effects of adenosine A1 receptor on pain-related behavior in normal and nerve-injured rats. Brain Res 1361:23–30

    Article  CAS  PubMed  Google Scholar 

  11. Nascimento FP, Figueredo SM, Marcon R, Martins DF, Macedo SJ Jr, Lima DAN, Almeida RC, Ostroski RM, Rodrigues ALS, Santos ARS (2010) Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J Pharmacol Exp Ther 334:590–598

    Article  CAS  PubMed  Google Scholar 

  12. Nascimento FP, Macedo-Júnior SJ, Pamplona FA et al (2014) Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 51:1368–1378

    Article  PubMed  Google Scholar 

  13. Macedo-Junior SJ, Nascimento FP, Luiz-Cerutti M, Santos AR (2013) Role of pertussis toxin-sensitive G-protein, K+ channels, and voltage-gated Ca2+ channels in the antinociceptive effect of inosine. Purinergic Signal 9:51–58

    Article  CAS  PubMed  Google Scholar 

  14. de Oliveira ED, Schallenberger C, Böhmer AE et al (2016) Mechanisms involved in the antinociception induced by spinal administration of inosine or guanine in mice. Eur J Pharmacol 5:71–82

    Article  Google Scholar 

  15. Loram LC, Harrison JA, Sloane EM, Hutchinson MR, Sholar P, Taylor FR, Berkelhammer D, Coats BD, Poole S, Milligan ED, Maier SF, Rieger J, Watkins LR (2009) Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 29:14015–14025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loram LC, Taylor FR, Strand KA, Harrison JA, RzasaLynn R, Sholar P, Rieger J, Maier SF, Watkins LR (2013) Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 33:112–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li L, Hao JX, Fredholm BB (2010) Peripheral adenosine A2A receptors are involved in carrageenan-induced mechanical hyperalgesia in mice. Neuroscience 170:923–928

    Article  CAS  PubMed  Google Scholar 

  18. Hussey MJ, Clarke GD, Ledent C, Kitchen I, Hourani SMO (2010) Genetic deletion of the adenosine A2A receptor in mice reduces the changes in spinal cord NMDA binding and glucose uptake caused by a nociceptive stimulus. Neurosci Lett 479:297–301

    Article  CAS  PubMed  Google Scholar 

  19. Ford A, Castonguay A, Cottet M, Little JW, Chen Z, Symons-Liguori AM, Doyle T, Egan TM, Vanderah TW, de Koninck Y, Tosh DK, Jacobson KA, Salvemini D (2015) Engagement of the GABA to KCC2 signaling pathway contributes to the analgesic effects of A3AR agonists in neuropathic pain. J Neurosci 35:6057–6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Janes K, Esposito E, Doyle T (2014) A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 155:2560–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janes K, Wahlman C, Little JW, Doyle T, Tosh DK, Jacobson KA, Salvemini D (2015) Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 44:91–99

    Article  CAS  PubMed  Google Scholar 

  22. Little JW, Ford A, Symons-Ligouri AM et al (2015) Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain 138:28–35

    Article  PubMed  Google Scholar 

  23. Taiwo YO, Levine JD (1990) Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 38:757–762

    Article  CAS  PubMed  Google Scholar 

  24. Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70:434–438

    Article  CAS  PubMed  Google Scholar 

  25. Doak GJ, Sawynok J (1995) Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur J Pharmacol 281:311–318

    Article  CAS  PubMed  Google Scholar 

  26. Lima FO, Souza GR, Verri WA et al (2010) Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 15:506–515

    Article  Google Scholar 

  27. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  CAS  PubMed  Google Scholar 

  28. Fundytus ME (2001) Glutamate receptors and nociception: implications for the drug treatment of pain. CNS Drugs 15:29–58

    Article  CAS  PubMed  Google Scholar 

  29. Beirith A, Santos AR, Calixto JB (2002) Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Res 924:219–228

    Article  CAS  PubMed  Google Scholar 

  30. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 3:247–264

    Article  Google Scholar 

  31. Daly JW, Padgett WL, Secunda SI, Thompson RD, Olsson RA (1993) Structure activity relationships for 2-substituted adenosines at A1 and A2 adenosine receptors. Pharmacology 46:91–100

    Article  CAS  PubMed  Google Scholar 

  32. Bruns RF (1980) Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can J Physiol Pharmacol 58:673–691

    Article  CAS  PubMed  Google Scholar 

  33. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63:1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao ZG, Blaustein J, Gross AS, Melman N, Jacobson KA (2003) N6–substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem Pharmacol 65:1675–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bridges AJ, Bruns RF, Ortwine DF, Priebe SR, Szotek DL, Trivedi BK (1988) N6-[2-(3, 5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and its uronamide derivatives. Novel adenosine agonists with both high affinity and high selectivity for the adenosine A2 receptor. J Med Chem 31:1282–1285

    Article  CAS  PubMed  Google Scholar 

  36. Palmer TM, Poucher SM, Jacobson KA, Stiles GL (1996) 125I-4-(2-[7-amino-2-{furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-ylaminoethyl)phenol] (125I-ZM241385), a high affinity antagonist radioligand selective for the A2A adenosine receptor. Mol Pharmacol 48:970–974

    Google Scholar 

  37. Brackett LE, Daly JW (1994) Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol 47:801–814

    Article  CAS  PubMed  Google Scholar 

  38. Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G (2002) N6-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A3 receptor and a starting point for searching A2B ligands. J Med Chem 45:3271–3279

    Article  CAS  PubMed  Google Scholar 

  39. Klotz KN, Falgner N, Kachler S, Lambertucci C, Vittori S, Volpini R, Cristalli G (2007) [3 H]HEMADO—a novel tritiated agonist selective for the human adenosine A3 receptor. Eur J Pharmacol 556:14–18

    Article  CAS  PubMed  Google Scholar 

  40. Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  CAS  PubMed  Google Scholar 

  41. Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17:188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khasar SG, Wang JF, Taiwo YO, Heller PH, Green PG, Levine JD (1995) Mu-opioid agonist enhancement of prostaglandin-induced hyperalgesia in the rat: a G-protein beta gamma subunit-mediated effect? Neuroscience 67:189–195

    Article  CAS  PubMed  Google Scholar 

  43. Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  CAS  PubMed  Google Scholar 

  44. Katz NK, Ryals JM, Wright DE (2015) Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. Neuroscience 285:312–323

    Article  CAS  PubMed  Google Scholar 

  45. Bleakman D, Alt A, Nisenbaum ES (2006) Glutamate receptors and pain. Semin Cell Dev Biol 17:592–604

    Article  CAS  PubMed  Google Scholar 

  46. Chen JF, Lee CF, Chern Y (2014) Adenosine receptor neurobiology: overview. Int Rev Neurobiol 119:1–49

    Article  PubMed  Google Scholar 

  47. Liu J, Reid AR, Sawynok J (2013) Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline. Eur J Pharmacol 698:213–219

    Article  CAS  PubMed  Google Scholar 

  48. Liu J, Reid AR, Sawynok J (2013) Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. Neurosci Lett 536:64–68

    Article  CAS  PubMed  Google Scholar 

  49. Sawynok J, Reid AR, Liu J (2013) Spinal and peripheral adenosine A1 receptors contribute to antinociception by tramadol in the formalin test in mice. Eur J Pharmacol 714:373–378

    Article  CAS  PubMed  Google Scholar 

  50. Chen Z, Janes K, Chen C (2012) Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J 5:1855–1865

    Article  Google Scholar 

  51. Chanda ML, Mogil JS (2006) Sex differences in the effects of amiloride on formalin test nociception in mice. Am J Phys Regul Integr Comp Phys 291:R335–R342

    CAS  Google Scholar 

  52. Craft RM, Mogil JS, Aloisi AM (2004) Sex differences in pain and analgesia: the role of gonadal hormones. Eur J Pain 8:397–411

    Article  CAS  PubMed  Google Scholar 

  53. Rosen S, Ham B, Mogil JS (2017) Sex differences in neuroimmunity and pain (2017). J Neurosci Res 95:500–508

    Article  CAS  PubMed  Google Scholar 

  54. Cairns BE, Hu JW, Arendt-Nielsen L, Sessle BJ, Svensson P (2001) Sex-related differences in human pain and rat afferent discharge evoked by injection of glutamate into the masseter muscle. J Neurophysiol 86:782–791

    Article  CAS  PubMed  Google Scholar 

  55. Castrillon EE, Cairns BE, Wang K, Arendt-Nielsen L, Svensson P (2012) Comparison of glutamate-evoked pain between the temporalis and masseter muscles in men and women. Pain 153:823–829

    Article  PubMed  Google Scholar 

  56. Mogil JS (2012) Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nat Rev Neurosci 13:859–866

    Article  CAS  PubMed  Google Scholar 

  57. Racine M, Tousignant-Laflamme Y, Kloda LA, Dion D, Dupuis G, Choinière M (2012) A systematic literature review of 10 years of research on sex/gender and experimental pain perception - part 1: are there really differences between women and men? Pain 153:602–618

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNpQ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article and its additional files.

Funding

This study was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Nascimento.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was authorized by the Committee for Animal Research of the Universidade Federal de Santa Catarina.

Informed consent

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macedo-Júnior, S.J., Nascimento, F.P., Luiz-Cerutti, M. et al. The role of peripheral adenosine receptors in glutamate-induced pain nociceptive behavior. Purinergic Signalling 17, 303–312 (2021). https://doi.org/10.1007/s11302-021-09781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09781-y

Keywords

Navigation