Skip to main content

Advertisement

Log in

A hollow \({\hbox {Fe}}_{3} {\hbox {O}}_{4}\)-based nanocomposite anode for lithium-ion batteries with outstanding cycling performance

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The fabrication of hybrid electrodes with conversion-type electrode materials has drawn growing interest in improving the capacity performance of lithium-ion batteries (LIBs) for many high-energy applications. However, as a typical conversion-type electrode material, \({\hbox {Fe}}_{3}{\hbox {O}}_{4}\) is usually restricted by large amount of volume change during repeated lithiation/delithiation course, which dramatically hinders the cycling stability of the constructed LIBs. We design a hybrid electrode of \({\hbox {Fe}}_{3}{\hbox {O}}_{4}\) nanospheres with a hollow structure wrapped by \({\hbox {MnO}}_{2}\) nanosheets (H-Fe\(_{3}{\hbox {O}}_{4}/{\hbox {MnO}}_{2} \, \hbox {NSs}\) nanospheres). As a result of the synergetic effect of a high-capacity material coating and a robust hollow core, the H-Fe\(_{3}{\hbox {O}}_{4}/{\hbox {MnO}}_{2} \, \hbox {NS}\) hybrid electrode delivers reversible capacity as high as \(590 \, {\hbox {mAh g}}^{-1}\) at a current rate of 0.1 C and maintains 92% of the initial reversible capacity after 1000 cycles at 1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arico A S, Bruce P, Scrosati B, Tarascon J M and Schalkwijk W V 2005 Nat. Mater. 4 366

    Article  CAS  Google Scholar 

  2. Tarascon J M and Armand M 2001 Nature 414 359

    Article  CAS  Google Scholar 

  3. Goodenough J B and Kim Y 2010 Chem. Mater. 22 587

    Article  CAS  Google Scholar 

  4. Whittingham M S 2004 Chem. Rev. 104 4271

    Article  CAS  Google Scholar 

  5. Kang B and Ceder G 2009 Nature 458 190

    Article  CAS  Google Scholar 

  6. Flandroisa S and Simon B 1999 Carbon 37 165

    Article  Google Scholar 

  7. Lee S W, Gallant B M, Byon H R, Hammond P T and Horn Y S 2011 Energy Environ. Sci. 4 1972

    Article  CAS  Google Scholar 

  8. Mai Y J, Shi S J, Zhang D, Lu Y, Gu C D and Tu J P 2012 J. Power Sources 204 155

    Article  CAS  Google Scholar 

  9. Zhou W W, Cheng C W, Liu J P, Tay Y Y, Jiang J, Jia X T et al 2011 Adv. Funct. Mater. 21 2439

    Article  CAS  Google Scholar 

  10. Park M S, Wang G X, Kang Y M, Wexler D, Dou S X and Liu H K 2007 Angew. Chem. Int. Ed. 46 750

    Article  CAS  Google Scholar 

  11. Chen Y, Song B H, Tang X S, Lu L and Xue J M 2014 Small 10 1536

    Article  CAS  Google Scholar 

  12. Li L, Raji A R O and Tour J M 2013 Adv. Mater. 25 6298

    Article  CAS  Google Scholar 

  13. Jiang Y, Leng X J, Jia Z L and Chen H X 2015 J. Mater. Sci.: Mater. Electron. 26 2995

    CAS  Google Scholar 

  14. Taberna P L, Mitra S, Poizot P and Tarascon J M 2006 Nat. Mater. 5 567

    Article  CAS  Google Scholar 

  15. Cheng K, Yang F, Ye K, Zhang Y, Jiang X, Yin J L et al 2014 J. Power Sources 258 260

    Article  CAS  Google Scholar 

  16. Coey J M D, Berkowitz A E, Balcells L I, Putris F F and Parker F T 1998 Appl. Phys. Lett. 72 734

    Article  CAS  Google Scholar 

  17. Xiong Q Q, Tu J P, Lu Y, Chen J, Yu Y X, Qiao Y Q et al 2012 J. Phys. Chem. C 116 6495

    Article  CAS  Google Scholar 

  18. Yang Z C, Shen J G and Archer L A 2011 J. Mater. Chem. 21 11092

    Article  CAS  Google Scholar 

  19. He C N, Wu S, Zhao N Q, Shi C S, Liu E Z and Li J J 2013 ACS Nano 7 4459

    Article  CAS  Google Scholar 

  20. Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A et al 2008 Nat. Nanotechnol. 3 31

    Article  CAS  Google Scholar 

  21. Wang Z Y, Zhou L and Lou X W 2012 Adv. Mater. 24 1903

    Article  CAS  Google Scholar 

  22. Han C P, Ma Q L, Yang Y, Yang M, Yu W S, Dong X T et al 2015 J. Mater. Sci.: Mater. Electron. 26 8054

    CAS  Google Scholar 

  23. Chen Y W, Yuan T, Wang F, Hu J Q and Tu W P 2016 J. Mater. Sci.: Mater. Electron. 27 9983

    CAS  Google Scholar 

  24. Devaraj S and Munichandraiah N 2008 J. Phys. Chem. C 112 4406

    Article  CAS  Google Scholar 

  25. Ghodbane O, Ataherianc F, Wu N L and Favier F 2012 J. Power Sources 206 454

    Article  CAS  Google Scholar 

  26. Zhang Z Q, Ma C C, Huang M, Li F, Zhu S J, Hua C et al 2015 J. Mater. Sci.: Mater. Electron. 26 4212

    CAS  Google Scholar 

  27. Shebanova O N and Lazor P 2003 J. Solid State Chem. 174 424

    Article  CAS  Google Scholar 

  28. Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S and Pereira-Ramos J P 2003 Solid State Ion. 159 345

    Article  CAS  Google Scholar 

  29. Yoon T, Chae C, Sun Y K, Zhao X, Kung H H and Lee J K 2011 J. Mater. Chem. 21 17325

    Article  CAS  Google Scholar 

  30. Zhang L, Lian J, Wu L, Duan Z, Jiang J and Zhao L 2014 Langmuir 30 7006

    Article  CAS  Google Scholar 

  31. Morel A L, Nikitenko S I, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C et al 2008 ACS Nano 2 847

    Article  CAS  Google Scholar 

  32. Qin M G, Zhao H L, Yang W J, Zhou Y R and Li F 2016 RSC Adv. 6 23905

    Article  CAS  Google Scholar 

  33. Wen Z, Zhang Y, Wang Y, Li L and Chen R 2017 Chem. Eng. J. 312 39

    Article  CAS  Google Scholar 

  34. Sathiya M, Prakash A S, Ramesha K, Tarascon J M and Shukla A K 2011 J. Am. Chem. Soc. 133 16291

    Article  CAS  Google Scholar 

  35. Wang Y, Han Z J, Yu S F, Song R R, Song H H, Ostrikov K et al 2013 Carbon 64 230

    Article  CAS  Google Scholar 

  36. Jamnikab J and Maier J 2003 Phys. Chem. Chem. Phys. 5 5215

    Article  Google Scholar 

  37. Chen J, Xu L N, Li W Y and Gou X L 2005 Adv. Mater. 17 582

    Article  CAS  Google Scholar 

  38. Balaya P, Li H, Kienle L and Maier J 2003 Adv. Funct. Mater. 13 621

    Article  CAS  Google Scholar 

  39. Peng C X, Chen B D, Qin Y, Yang S H, Li C Z, Zuo Y H et al 2012 ACS Nano 6 1074

    Article  CAS  Google Scholar 

  40. Zhou G M, Wang D W, Yin L C, Li N, Li F and Cheng H M 2012 ACS Nano 6 3214

    Article  CAS  Google Scholar 

  41. Wang Z Y, Luan D Y, Madhavi S, Hu Y and Lou X W 2012 Energy Environ. Sci. 5 5252

    Article  CAS  Google Scholar 

  42. Liu Z, Yu X Y and Paik U 2016 Adv. Energy Mater. 6 1502318

    Article  Google Scholar 

  43. Wei W, Yang, Zhou H, Lieberwirth I, Feng X and Müllen K 2013 Adv. Mater. 25 2909

    Article  CAS  Google Scholar 

  44. Chen T, Hu Y, Cheng B, Chen R, Lv H, Ma L et al 2016 Nano Energy 20 305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Development Programs of Jilin Province (grant nos. 20180520217JH and 20170520152JH) and the National Natural Science Foundation of China (no. 51403075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Bi, F., Zhao, L. et al. A hollow \({\hbox {Fe}}_{3} {\hbox {O}}_{4}\)-based nanocomposite anode for lithium-ion batteries with outstanding cycling performance. Bull Mater Sci 42, 97 (2019). https://doi.org/10.1007/s12034-019-1773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1773-9

Keywords

Navigation