Skip to main content
Log in

A gDNA Microarray for Genotyping Salvia Species

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Salvia is an important genus from the Lamiaceae with approximately 1,000 species. This genus is distributed globally and cultivated for ornamental, culinary, and medicinal uses. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus. In order to generate the Salvia subtracted diversity array (SDA) a suppression subtractive hybridization (SSH) was performed between a pool of Salvia species and a pool of angiosperms and non-angiosperms to selectively isolate Salvia-specific sequences. A total of 285-subtracted genomic DNA (gDNA) fragments were amplified and arrayed. DNA fingerprints were obtained for fifteen Salvia genotypes including three that were not part of the original subtraction pool. Hierarchical cluster analysis indicated that the Salvia-specific SDA was capable of differentiating S. officinalis and S. miltiorrhiza from their closely related species and was also able to reveal genetic relationships consistent with geographical origins. In addition, this approach was capable of isolating highly polymorphic sequences from chloroplast and nuclear DNA without preliminary sequence information. Therefore, SDA is a powerful technique for fingerprinting non-model plants and for identifying new polymorphic loci that may be developed as potential molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walker, J. B., Sytsma, K. J., Treutlein, J., & Wink, M. (2004). Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. American Journal of Botany, 91, 1115–1125.

    Article  Google Scholar 

  2. Bruna, S., Giovannini, A., Benedetti, L. D., Principato, M. C., & Ruffoni, B. (2006). Molecular analysis of Salvia Spp. through RAPD markers. ISHS Acta Horticulturae, 723, 157–160.

    CAS  Google Scholar 

  3. Topcu, G. (2006). Bioactive triterpenoids from Salvia species. Journal of Natural Products, 69, 482–487.

    Article  CAS  Google Scholar 

  4. Echeverrigaray, S., & Agostini, G. (2006). Genetic relationships between commercial cultivars and Brazilian accessions of Salvia officinalis L. based on RAPD markers. Revista Brasileira de Plantas Medicinais, 8, 13–17.

    Google Scholar 

  5. Longaray-Delamare, A. P., Moschen-Pistorello, I. T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L, cultivated in south Brazil. Food Chemistry, 100, 603–608.

    Article  CAS  Google Scholar 

  6. Cai, Z., Lee, F. S. C., Wang, X. R., & Yu, W. J. (2002). A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs. Journal of Mass Spectrometry, 37, 1013–1024.

    Article  CAS  Google Scholar 

  7. Reales, A., Rivera, D., Palazon, J. A., & Obon, C. (2004). Numerical taxonomy study of Salvia sect. Salvia (Labiatae). Botanical Journal of the Linnean Society, 145, 353–371.

    Article  Google Scholar 

  8. Zhong, G. X., Li, P., Zeng, L. J., Guan, J., Li, D. Q., & Li, S. P. (2009). Chemical characteristics of Salvia miltiorrhiza (Danshen) collected from different locations in China. Journal of Agriculture and Food Chemistry, 57, 6879–6887.

    Article  CAS  Google Scholar 

  9. Kiran, U., Khan, S., Mirza, K. J., Ram, M., & Abdin, M. Z. (2010). SCAR markers: A potential tool for authentication of herbal drugs. Fitoterapia, 81, 969–976.

    Article  CAS  Google Scholar 

  10. Joshi, K., Chavan, P., Warude, D., & Patwardhan, B. (2004). Molecular markers in herbal drug technology. Current Science India, 87, 159–165.

    CAS  Google Scholar 

  11. Canter, P. H., Thomas, H., & Ernst, E. (2005). Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends in Biotechnology, 23, 180–185.

    Article  CAS  Google Scholar 

  12. Böszörményi, A., Héthelyi, E., Farkas, A., Horváth, G., Papp, N., Lemberkovics, E., et al. (2009). Chemical and genetic relationships among sage (Salvia officinalis L.) cultivars and Judean sage (Salvia judaica Boiss.). Journal of Agriculture and Food Chemistry, 57, 4663–4667.

    Article  Google Scholar 

  13. Skoula, M., El Hilali, I., & Makris, A. M. (1999). Evaluation of the genetic diversity of Salvia fruticosa Mill. clones using RAPD markers and comparison with the essential oil profiles. Biochemical Systematics and Ecology, 27, 559–568.

    Article  CAS  Google Scholar 

  14. Braglia, L., Casabianca, V., De Benedetti, L., Pecchioni, N., Mercuri, A., Cervelli, C., et al. (2011). Amplified fragment length polymorphism markers for DNA fingerprinting in the genus Salvia. Plant Biosystems, 145, 274–277.

    Article  Google Scholar 

  15. Jaccoud, D., Peng, K., Feinstein, D., & Kilian, A. (2001). Diversity arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Research, 29, E25.

    Article  CAS  Google Scholar 

  16. Karaca, M., Ince, A. G., Ay, S. T., Turgut, K., & Onus, A. N. (2008). PCR-RFLP and DAMD-PCR genotyping for Salvia species. Journal of the Science of Food and Agriculture, 88, 2508–2516.

    Article  CAS  Google Scholar 

  17. Xu, H., Wang, Z. T., Cheng, K. T., Wu, T., Gu, L. H., & Hu, Z. B. (2009). Comparison of rDNA ITS sequences and tanshinones between Salvia miltiorrhiza populations and Salvia species. Botanical Studies, 50, 127–135.

    CAS  Google Scholar 

  18. Han, J. P., Liu, C., Li, M. H., Shi, L. C., Song, J. Y., Yao, H., et al. (2010). Relationship between DNA barcoding and chemical classification of Salvia medicinal herbs. Chinese Herbal Medicines, 2, 16–29.

    CAS  Google Scholar 

  19. Takano, A., & Okada, H. (2010). Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae). Journal of Plant Research, 124, 245–252.

    Article  Google Scholar 

  20. Kingsley, M. T., Straub, T. M., Call, D. R., Daly, D. S., Wunschel, S. C., & Chandler, D. P. (2002). Fingerprinting closely related Xanthomonas pathovars with random nonamer oligonucleotide microarrays. Applied and Environment Microbiology, 68, 6361–6370.

    Article  CAS  Google Scholar 

  21. Li, T. -X., Wang, J. -K., Bai, Y. -F., & Lu, Z. -H. (2006). Diversity suppression-subtractive hybridization array for profiling genomic DNA polymorphisms. Journal of Integrative Plant Biology, 48, 460–467.

    Article  CAS  Google Scholar 

  22. Jayasinghe, R., Kong, S., Coram, T. E., Kaganovitch, J., Xue, C. C., Li, C. G., et al. (2007). Construction and validation of a prototype microarray for efficient and high-throughput genotyping of angiosperms. Plant Biotechnology Journal, 5, 282–289.

    Article  CAS  Google Scholar 

  23. Jayasinghe, R., Hai Niu, L., Coram, T. E., Kong, S., Kaganovitch, J., Xue, C. C. L., et al. (2009). Effectiveness of an innovative prototype subtracted diversity array (SDA) for fingerprinting plant species of medicinal importance. Planta Medica, 75, 1180–1185.

    Article  CAS  Google Scholar 

  24. Mantri, N., Olarte, A., Li, C. G., Xue, C., & Pang, E. C. K. (2012). Fingerprinting the Asterid species using subtracted diversity array reveals novel species-specific sequences. PLoS ONE, 7, e34873.

    Article  CAS  Google Scholar 

  25. Duncan, B. D., & Isaac, G. (1994). Ferns and allied plants of Victoria, Tasmania and South Australia. Melbourne University Press in association with Monash University, Carlton.

  26. Li, C. G., Sheng, S. J., Pang, E. C., Marriot, P., May, B., Zhou, S. F., et al. (2009). Cultivar variations of Australian-grown Danshen (Salvia miltiorrhiza): Bioactive markers and root yields. Chemistry & Biodiversity, 6, 170–181.

    Article  CAS  Google Scholar 

  27. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 1–15.

    Google Scholar 

  28. Bremer, B., Bremer, Kr., Chase, M., Fay, M., Reveal, J., Soltis, D., et al. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.

    Article  Google Scholar 

  29. Coram, T. E., & Pang, E. C. K. (2005). Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiological and Molecular Plant Pathology, 66, 192–200.

    Article  CAS  Google Scholar 

  30. National Center of Biotechnology Information (www.ncbi.nlm.nih.gov).

  31. Gadgil, C., Rink, A., Beattie, C., & Hu, W. S. (2002). A mathematical model for suppression subtractive hybridization. Comparative and Functional Genomics, 3, 405–422.

    Article  CAS  Google Scholar 

  32. Lezar, S., Myburg, A. A., Berger, D. K., Wingfield, M. J., & Wingfield, B. D. (2004). Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theoretical and Applied Genetics, 109, 1329–1336.

    Article  CAS  Google Scholar 

  33. Wittenberg, A. H. J., van der Lee, T., Cayla, C., Kilian, A., Visser, R. G. F., & Schouten, H. J. (2005). Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Molecular Genetics and Genomics, 274, 30–39.

    Article  CAS  Google Scholar 

  34. Claßen-Bockhoff, R. (2007). Floral construction and pollination biology in the Lamiaceae. Annals of Botany, 100, 359–360.

    Article  Google Scholar 

  35. Pound, L. M., Wallwork, M. A. B., Potts, B. M., & Sedgley, M. (2002). Self-incompatibility in Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany, 50, 365–372.

    Article  Google Scholar 

  36. Dudai, N., Lewinsohn, E., Larkov, O., Katzir, I., Ravid, U., Chaimovitsh, D., et al. (1999). Dynamics of yield components and essential oil production in a commercial hybrid sage (Salvia officinalis x Salvia fruticosa cv. Newe Ya’ar no. 4). Journal of Agriculture and Food Chemistry, 47, 4341–4345.

    Article  CAS  Google Scholar 

  37. Cao, J., Wei, Y. J., Qi, L. W., Li, P., Qian, Z. M., Luo, H. W., et al. (2008). Determination of fifteen bioactive components in Radix et Rhizoma Salviae Miltiorrhizae by high-performance liquid chromatography with ultraviolet and mass spectrometric detection. Biomedical Chromatography, 22, 164–172.

    Article  CAS  Google Scholar 

  38. Li, M. H. (2008). Investigation of Danshen and related medicinal plants in China. Journal of Ethnopharmacology, 120, 419–426.

    Article  Google Scholar 

  39. Walker, J. B., & Sytsma, K. J. (2007). Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Annals of Botany, 100, 375–391.

    Article  CAS  Google Scholar 

  40. Lee, H. L., Jansen, R. K., Chumley, T. W., & Kim, K. J. (2007). Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Molecular Biology and Evolution, 24, 1161–1180.

    Article  CAS  Google Scholar 

  41. Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., Percy, D. M., Graham, S. W., Barrett, S. C. H., et al. (2009). Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources, 9, 130–139.

    Article  CAS  Google Scholar 

  42. Chase, M. W., Salamin, N., Wilkinson, M., Dunwell, J. M., Kesanakurthi, R. P., Haidar, N., et al. (2005). Land plants and DNA barcodes: Short-term and long-term goals. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 360, 1889–1895.

    Article  CAS  Google Scholar 

  43. Alvarez, I., Costa, A., & Feliner, G. N. (2008). Selecting single-copy nuclear genes for plant phylogenetics: A preliminary analysis for the Senecioneae (Asteraceae). Journal of Molecular Evolution, 66, 276–291.

    Article  CAS  Google Scholar 

  44. Pang, E. (2011). Using frontier technologies for the quality assurance of medicinal herbs (pp. 1–21). RIRDC publications. RMIT University, Melbourne.

  45. Bertea, C. M., Luciano, P., Bossi, S., Leoni, F., Baiocchi, C., Medana, C., et al. (2006). PCR and PCR-RFLP of the 5S-rRNA-NTS region and salvinorin A analyses for the rapid and unequivocal determination of Salvia divinorum. Phytochemistry, 67, 371–378.

    Article  CAS  Google Scholar 

  46. De Mattia, F., Bruni, I., Galimberti, A., Cattaneo, F., Casiraghi, M., & Labra, M. (2011). A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Research International, 44, 693–702.

    Article  Google Scholar 

  47. Deng, K. J., Zhang, Y., Xiong, B. Q., Peng, J. H., Zhang, T., Zhao, X. N., et al. (2009). Identification, characterization and utilization of simple sequence repeat markers derived from Salvia miltiorrhiza expressed sequence tags. Yao Xue Xue Bao [Acta Pharmaceutica Sinica], 44, 1165–1172.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Rural Industries Research and Development Corporation, RMIT University and the Australian Postgraduate Scholarship awarded to Alexandra Olarte. We acknowledge the technical support from A/Prof. Reg Lehmann from MediHerb Australia and Claudia Salazar for their assistance with the graphics in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mantri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olarte, A., Mantri, N., Nugent, G. et al. A gDNA Microarray for Genotyping Salvia Species. Mol Biotechnol 54, 770–783 (2013). https://doi.org/10.1007/s12033-012-9625-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9625-5

Keywords

Navigation