Molecular Biotechnology

, Volume 54, Issue 3, pp 770–783 | Cite as

A gDNA Microarray for Genotyping Salvia Species

  • Alexandra Olarte
  • Nitin Mantri
  • Gregory Nugent
  • Hans Wohlmuth
  • Chun Guang Li
  • Charlie Xue
  • Edwin Pang
Research

Abstract

Salvia is an important genus from the Lamiaceae with approximately 1,000 species. This genus is distributed globally and cultivated for ornamental, culinary, and medicinal uses. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus. In order to generate the Salvia subtracted diversity array (SDA) a suppression subtractive hybridization (SSH) was performed between a pool of Salvia species and a pool of angiosperms and non-angiosperms to selectively isolate Salvia-specific sequences. A total of 285-subtracted genomic DNA (gDNA) fragments were amplified and arrayed. DNA fingerprints were obtained for fifteen Salvia genotypes including three that were not part of the original subtraction pool. Hierarchical cluster analysis indicated that the Salvia-specific SDA was capable of differentiating S. officinalis and S. miltiorrhiza from their closely related species and was also able to reveal genetic relationships consistent with geographical origins. In addition, this approach was capable of isolating highly polymorphic sequences from chloroplast and nuclear DNA without preliminary sequence information. Therefore, SDA is a powerful technique for fingerprinting non-model plants and for identifying new polymorphic loci that may be developed as potential molecular markers.

Keywords

Microarray Genotyping Salvia Diversity 

Notes

Acknowledgments

The authors gratefully acknowledge the support from the Rural Industries Research and Development Corporation, RMIT University and the Australian Postgraduate Scholarship awarded to Alexandra Olarte. We acknowledge the technical support from A/Prof. Reg Lehmann from MediHerb Australia and Claudia Salazar for their assistance with the graphics in this study.

References

  1. 1.
    Walker, J. B., Sytsma, K. J., Treutlein, J., & Wink, M. (2004). Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. American Journal of Botany, 91, 1115–1125.CrossRefGoogle Scholar
  2. 2.
    Bruna, S., Giovannini, A., Benedetti, L. D., Principato, M. C., & Ruffoni, B. (2006). Molecular analysis of Salvia Spp. through RAPD markers. ISHS Acta Horticulturae, 723, 157–160.Google Scholar
  3. 3.
    Topcu, G. (2006). Bioactive triterpenoids from Salvia species. Journal of Natural Products, 69, 482–487.CrossRefGoogle Scholar
  4. 4.
    Echeverrigaray, S., & Agostini, G. (2006). Genetic relationships between commercial cultivars and Brazilian accessions of Salvia officinalis L. based on RAPD markers. Revista Brasileira de Plantas Medicinais, 8, 13–17.Google Scholar
  5. 5.
    Longaray-Delamare, A. P., Moschen-Pistorello, I. T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L, cultivated in south Brazil. Food Chemistry, 100, 603–608.CrossRefGoogle Scholar
  6. 6.
    Cai, Z., Lee, F. S. C., Wang, X. R., & Yu, W. J. (2002). A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs. Journal of Mass Spectrometry, 37, 1013–1024.CrossRefGoogle Scholar
  7. 7.
    Reales, A., Rivera, D., Palazon, J. A., & Obon, C. (2004). Numerical taxonomy study of Salvia sect. Salvia (Labiatae). Botanical Journal of the Linnean Society, 145, 353–371.CrossRefGoogle Scholar
  8. 8.
    Zhong, G. X., Li, P., Zeng, L. J., Guan, J., Li, D. Q., & Li, S. P. (2009). Chemical characteristics of Salvia miltiorrhiza (Danshen) collected from different locations in China. Journal of Agriculture and Food Chemistry, 57, 6879–6887.CrossRefGoogle Scholar
  9. 9.
    Kiran, U., Khan, S., Mirza, K. J., Ram, M., & Abdin, M. Z. (2010). SCAR markers: A potential tool for authentication of herbal drugs. Fitoterapia, 81, 969–976.CrossRefGoogle Scholar
  10. 10.
    Joshi, K., Chavan, P., Warude, D., & Patwardhan, B. (2004). Molecular markers in herbal drug technology. Current Science India, 87, 159–165.Google Scholar
  11. 11.
    Canter, P. H., Thomas, H., & Ernst, E. (2005). Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends in Biotechnology, 23, 180–185.CrossRefGoogle Scholar
  12. 12.
    Böszörményi, A., Héthelyi, E., Farkas, A., Horváth, G., Papp, N., Lemberkovics, E., et al. (2009). Chemical and genetic relationships among sage (Salvia officinalis L.) cultivars and Judean sage (Salvia judaica Boiss.). Journal of Agriculture and Food Chemistry, 57, 4663–4667.CrossRefGoogle Scholar
  13. 13.
    Skoula, M., El Hilali, I., & Makris, A. M. (1999). Evaluation of the genetic diversity of Salvia fruticosa Mill. clones using RAPD markers and comparison with the essential oil profiles. Biochemical Systematics and Ecology, 27, 559–568.CrossRefGoogle Scholar
  14. 14.
    Braglia, L., Casabianca, V., De Benedetti, L., Pecchioni, N., Mercuri, A., Cervelli, C., et al. (2011). Amplified fragment length polymorphism markers for DNA fingerprinting in the genus Salvia. Plant Biosystems, 145, 274–277.CrossRefGoogle Scholar
  15. 15.
    Jaccoud, D., Peng, K., Feinstein, D., & Kilian, A. (2001). Diversity arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Research, 29, E25.CrossRefGoogle Scholar
  16. 16.
    Karaca, M., Ince, A. G., Ay, S. T., Turgut, K., & Onus, A. N. (2008). PCR-RFLP and DAMD-PCR genotyping for Salvia species. Journal of the Science of Food and Agriculture, 88, 2508–2516.CrossRefGoogle Scholar
  17. 17.
    Xu, H., Wang, Z. T., Cheng, K. T., Wu, T., Gu, L. H., & Hu, Z. B. (2009). Comparison of rDNA ITS sequences and tanshinones between Salvia miltiorrhiza populations and Salvia species. Botanical Studies, 50, 127–135.Google Scholar
  18. 18.
    Han, J. P., Liu, C., Li, M. H., Shi, L. C., Song, J. Y., Yao, H., et al. (2010). Relationship between DNA barcoding and chemical classification of Salvia medicinal herbs. Chinese Herbal Medicines, 2, 16–29.Google Scholar
  19. 19.
    Takano, A., & Okada, H. (2010). Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae). Journal of Plant Research, 124, 245–252.CrossRefGoogle Scholar
  20. 20.
    Kingsley, M. T., Straub, T. M., Call, D. R., Daly, D. S., Wunschel, S. C., & Chandler, D. P. (2002). Fingerprinting closely related Xanthomonas pathovars with random nonamer oligonucleotide microarrays. Applied and Environment Microbiology, 68, 6361–6370.CrossRefGoogle Scholar
  21. 21.
    Li, T. -X., Wang, J. -K., Bai, Y. -F., & Lu, Z. -H. (2006). Diversity suppression-subtractive hybridization array for profiling genomic DNA polymorphisms. Journal of Integrative Plant Biology, 48, 460–467.CrossRefGoogle Scholar
  22. 22.
    Jayasinghe, R., Kong, S., Coram, T. E., Kaganovitch, J., Xue, C. C., Li, C. G., et al. (2007). Construction and validation of a prototype microarray for efficient and high-throughput genotyping of angiosperms. Plant Biotechnology Journal, 5, 282–289.CrossRefGoogle Scholar
  23. 23.
    Jayasinghe, R., Hai Niu, L., Coram, T. E., Kong, S., Kaganovitch, J., Xue, C. C. L., et al. (2009). Effectiveness of an innovative prototype subtracted diversity array (SDA) for fingerprinting plant species of medicinal importance. Planta Medica, 75, 1180–1185.CrossRefGoogle Scholar
  24. 24.
    Mantri, N., Olarte, A., Li, C. G., Xue, C., & Pang, E. C. K. (2012). Fingerprinting the Asterid species using subtracted diversity array reveals novel species-specific sequences. PLoS ONE, 7, e34873.CrossRefGoogle Scholar
  25. 25.
    Duncan, B. D., & Isaac, G. (1994). Ferns and allied plants of Victoria, Tasmania and South Australia. Melbourne University Press in association with Monash University, Carlton.Google Scholar
  26. 26.
    Li, C. G., Sheng, S. J., Pang, E. C., Marriot, P., May, B., Zhou, S. F., et al. (2009). Cultivar variations of Australian-grown Danshen (Salvia miltiorrhiza): Bioactive markers and root yields. Chemistry & Biodiversity, 6, 170–181.CrossRefGoogle Scholar
  27. 27.
    Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 1–15.Google Scholar
  28. 28.
    Bremer, B., Bremer, Kr., Chase, M., Fay, M., Reveal, J., Soltis, D., et al. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.CrossRefGoogle Scholar
  29. 29.
    Coram, T. E., & Pang, E. C. K. (2005). Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiological and Molecular Plant Pathology, 66, 192–200.CrossRefGoogle Scholar
  30. 30.
    National Center of Biotechnology Information (www.ncbi.nlm.nih.gov).
  31. 31.
    Gadgil, C., Rink, A., Beattie, C., & Hu, W. S. (2002). A mathematical model for suppression subtractive hybridization. Comparative and Functional Genomics, 3, 405–422.CrossRefGoogle Scholar
  32. 32.
    Lezar, S., Myburg, A. A., Berger, D. K., Wingfield, M. J., & Wingfield, B. D. (2004). Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theoretical and Applied Genetics, 109, 1329–1336.CrossRefGoogle Scholar
  33. 33.
    Wittenberg, A. H. J., van der Lee, T., Cayla, C., Kilian, A., Visser, R. G. F., & Schouten, H. J. (2005). Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Molecular Genetics and Genomics, 274, 30–39.CrossRefGoogle Scholar
  34. 34.
    Claßen-Bockhoff, R. (2007). Floral construction and pollination biology in the Lamiaceae. Annals of Botany, 100, 359–360.CrossRefGoogle Scholar
  35. 35.
    Pound, L. M., Wallwork, M. A. B., Potts, B. M., & Sedgley, M. (2002). Self-incompatibility in Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany, 50, 365–372.CrossRefGoogle Scholar
  36. 36.
    Dudai, N., Lewinsohn, E., Larkov, O., Katzir, I., Ravid, U., Chaimovitsh, D., et al. (1999). Dynamics of yield components and essential oil production in a commercial hybrid sage (Salvia officinalis x Salvia fruticosa cv. Newe Ya’ar no. 4). Journal of Agriculture and Food Chemistry, 47, 4341–4345.CrossRefGoogle Scholar
  37. 37.
    Cao, J., Wei, Y. J., Qi, L. W., Li, P., Qian, Z. M., Luo, H. W., et al. (2008). Determination of fifteen bioactive components in Radix et Rhizoma Salviae Miltiorrhizae by high-performance liquid chromatography with ultraviolet and mass spectrometric detection. Biomedical Chromatography, 22, 164–172.CrossRefGoogle Scholar
  38. 38.
    Li, M. H. (2008). Investigation of Danshen and related medicinal plants in China. Journal of Ethnopharmacology, 120, 419–426.CrossRefGoogle Scholar
  39. 39.
    Walker, J. B., & Sytsma, K. J. (2007). Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Annals of Botany, 100, 375–391.CrossRefGoogle Scholar
  40. 40.
    Lee, H. L., Jansen, R. K., Chumley, T. W., & Kim, K. J. (2007). Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Molecular Biology and Evolution, 24, 1161–1180.CrossRefGoogle Scholar
  41. 41.
    Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., Percy, D. M., Graham, S. W., Barrett, S. C. H., et al. (2009). Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources, 9, 130–139.CrossRefGoogle Scholar
  42. 42.
    Chase, M. W., Salamin, N., Wilkinson, M., Dunwell, J. M., Kesanakurthi, R. P., Haidar, N., et al. (2005). Land plants and DNA barcodes: Short-term and long-term goals. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 360, 1889–1895.CrossRefGoogle Scholar
  43. 43.
    Alvarez, I., Costa, A., & Feliner, G. N. (2008). Selecting single-copy nuclear genes for plant phylogenetics: A preliminary analysis for the Senecioneae (Asteraceae). Journal of Molecular Evolution, 66, 276–291.CrossRefGoogle Scholar
  44. 44.
    Pang, E. (2011). Using frontier technologies for the quality assurance of medicinal herbs (pp. 1–21). RIRDC publications. RMIT University, Melbourne.Google Scholar
  45. 45.
    Bertea, C. M., Luciano, P., Bossi, S., Leoni, F., Baiocchi, C., Medana, C., et al. (2006). PCR and PCR-RFLP of the 5S-rRNA-NTS region and salvinorin A analyses for the rapid and unequivocal determination of Salvia divinorum. Phytochemistry, 67, 371–378.CrossRefGoogle Scholar
  46. 46.
    De Mattia, F., Bruni, I., Galimberti, A., Cattaneo, F., Casiraghi, M., & Labra, M. (2011). A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Research International, 44, 693–702.CrossRefGoogle Scholar
  47. 47.
    Deng, K. J., Zhang, Y., Xiong, B. Q., Peng, J. H., Zhang, T., Zhao, X. N., et al. (2009). Identification, characterization and utilization of simple sequence repeat markers derived from Salvia miltiorrhiza expressed sequence tags. Yao Xue Xue Bao [Acta Pharmaceutica Sinica], 44, 1165–1172.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Alexandra Olarte
    • 1
  • Nitin Mantri
    • 1
  • Gregory Nugent
    • 1
  • Hans Wohlmuth
    • 3
  • Chun Guang Li
    • 2
  • Charlie Xue
    • 2
  • Edwin Pang
    • 1
  1. 1.Health Innovations Research InstituteSchool of Applied Sciences, RMIT UniversityMelbourneAustralia
  2. 2.Health Innovations Research InstituteSchool of Health Sciences, RMIT UniversityMelbourneAustralia
  3. 3.Southern Cross Plant Science and Medicinal Plant HerbariumSouthern Cross UniversityLismoreAustralia

Personalised recommendations