Advertisement

Molecular Biotechnology

, Volume 53, Issue 1, pp 92–107 | Cite as

Construction and Characterization of Virus-Like Particles: A Review

  • Andris ZeltinsEmail author
Review

Abstract

Over the last three decades, virus-like particles (VLPs) have evolved to become a widely accepted technology, especially in the field of vaccinology. In fact, some VLP-based vaccines are currently used as commercial medical products, and other VLP-based products are at different stages of clinical study. Several remarkable advantages have been achieved in the development of VLPs as gene therapy tools and new nanomaterials. The analysis of published data reveals that at least 110 VLPs have been constructed from viruses belonging to 35 different families. This review therefore discusses the main principles in the cloning of viral structural genes, the relevant host systems and the purification procedures that have been developed. In addition, the methods that are used to characterize the structural integrity, stability, and components, including the encapsidated nucleic acids, of newly synthesized VLPs are analyzed. Moreover, some of the modifications that are required to construct VLP-based carriers of viral origin with defined properties are discussed, and examples are provided.

Keywords

Cloning Expression system Nanoparticle Self-assembly Vaccine Virus 

Notes

Acknowledgments

I wish to thank Prof. Dr. P. Pumpens for support during the preparation and critical reading the manuscript, Dr. K. Tars, and Dr. A. Kazaks for helpful discussions. I apologize to the authors for the important work not cited in this review. The writing of the review was supported by the ERAF grant 2010/0314/2DP/2.1.1.1.0/10/APIA/VIAA/052.

Supplementary material

12033_2012_9598_MOESM1_ESM.doc (269 kb)
Supplementary material 1 (DOC 269 kb)

References

  1. 1.
    Pumpens, P., & Grens, E. (2002). Artificial genes for chimeric virus-like particles. In Y. E. Khudyakov & H. A. Fields (Eds.), Artificial DNA: Methods and applications (pp. 249–327). Boca Raton: CRC Press.Google Scholar
  2. 2.
    Pumpens, P., Ulrich, R., Sasnauskas, K., Kazaks, A., Ose, V., & Grens, E. (2009). Construction of novel vaccines on the basis of the virus-like particles: Hepatitis B virus proteins as vaccine carriers. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 205–248). Boca Raton: CRC Press.Google Scholar
  3. 3.
    Frazer, I. H. (2004). Prevention of cervical cancer through papillomavirus vaccination. Nature Reviews Immunology, 4, 46–54.CrossRefGoogle Scholar
  4. 4.
    Liu, F., Ge, S., Li, L., Wu, X., Liu, Z., & Wang, Z. (2012). Virus-like particles: Potential veterinary vaccine immunogens. Research in Veterinary Science, 93, 553–559.CrossRefGoogle Scholar
  5. 5.
    Roldão, A., Mellado, M. C., Castilho, L. R., Carrondo, M. J., & Alves, P. M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9, 1149–1176.CrossRefGoogle Scholar
  6. 6.
    Bachmann, M. F., & Zinkernagel, R. M. (1997). Neutralizing antiviral B cell responses. Annual Review of Immunology, 15, 235–270.CrossRefGoogle Scholar
  7. 7.
    Brun, A., Bárcena, J., Blanco, E., Borrego, B., Dory, D., Escribano, J. M., et al. (2011). Current strategies for subunit and genetic viral veterinary vaccine development. Virus Research, 157, 1–12.CrossRefGoogle Scholar
  8. 8.
    Bachmann, M. F., & Dyer, M. R. (2004). Therapeutic vaccination for chronic diseases: A new class of drugs in sight. Nature Reviews Drug Discovery, 3, 81–88.CrossRefGoogle Scholar
  9. 9.
    Bachmann, M. F., Rohrer, U. H., Kündig, T. M., Bürki, K., Hengartner, H., & Zinkernagel, R. M. (1993). The influence of antigen organization on B cell responsiveness. Science, 262, 1448–1451.CrossRefGoogle Scholar
  10. 10.
    Lamarre, B., & Ryadnov, M. G. (2011). Self-assembling viral mimetics: One long journey with short steps. Macromolecular Bioscience, 8, 503–513.CrossRefGoogle Scholar
  11. 11.
    Seow, Y., & Wood, M. J. (2009). Biological gene delivery vehicles: Beyond viral vectors. Molecular Therapy, 17, 767–777.CrossRefGoogle Scholar
  12. 12.
    Soto, C. M., & Ratna, B. R. (2010). Virus hybrids as nanomaterials for biotechnology. Current Opinion in Biotechnology, 21, 426–438.CrossRefGoogle Scholar
  13. 13.
    Lee, L. A., Niu, Z., & Wang, Q. (2009). Viruses and virus-like protein assemblies—chemically programmable nanoscale building blocks. Nano Research, 2, 349–364.CrossRefGoogle Scholar
  14. 14.
    Pattenden, L. K., Middelberg, A. P., Niebert, M., & Lipin, D. I. (2005). Towards the preparative and large-scale precision manufacture of virus-like particles. Trends in Biotechnology, 23, 523–529.CrossRefGoogle Scholar
  15. 15.
    Hoenen, T., Groseth, A., de Kok-Mercado, F., Kuhn, J. H., & Wahl-Jensen, V. (2011). Minigenomes, transcription and replication competent virus-like particles and beyond: Reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Research, 91, 195–208.CrossRefGoogle Scholar
  16. 16.
    Saccardo, P., Villaverde, A., & González-Montalbán, N. (2009). Peptide-mediated DNA condensation for non-viral gene therapy. Biotechnology Advances, 27, 432–438.CrossRefGoogle Scholar
  17. 17.
    Burrell, C. J., MacKay, P., Greenaway, P. J., Hofschneider, P. H., & Murray, K. (1979). Expression in Escherichia coli of hepatitis B virus DNA sequences cloned in plasmid pBR322. Nature, 279, 43–47.CrossRefGoogle Scholar
  18. 18.
    Valenzuela, P., Medina, A., Rutter, W. J., Ammerer, G., & Hall, B. D. (1982). Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature, 298, 347–350.CrossRefGoogle Scholar
  19. 19.
    Haynes, J. R., Cunningham, J., von Seefried, A., Lennick, M., Garvin, R. T., & Shen, S. H. (1986). Development of a genetically-engineered, candidate polio vaccine employing the selfassembling properties of the tobacco mosaic virus coat protein. Biotechnology, 4, 637–641.CrossRefGoogle Scholar
  20. 20.
    Cohen, B. J., & Richmond, J. E. (1982). Electron microscopy of hepatitis B core antigen synthesized in E. coli. Nature, 296, 677–678.CrossRefGoogle Scholar
  21. 21.
    Chuan, Y. P., Lua, L. H., & Middelberg, A. P. (2008). High-level expression of soluble viral structural protein in Escherichia coli. Journal of Biotechnology, 20, 64–71.CrossRefGoogle Scholar
  22. 22.
    Sánchez-Rodríguez, S. P., Münch-Anguiano, L., Echeverría, O., Vázquez-Nin, G., Mora-Pale, M., Dordick, J. S., et al. (2012). Human parvovirus B19 virus-like particles: In vitro assembly and stability. Biochimie, 94, 870–878.CrossRefGoogle Scholar
  23. 23.
    Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S., & Young, M. J. (1995). In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology, 10, 486–494.CrossRefGoogle Scholar
  24. 24.
    Xu, Y., Ye, J., Liu, H., Cheng, E., Yang, Y., Wang, W., et al. (2008). DNA-templated CMV viral capsid proteins assemble into nanotubes. Chemical Communications, 1, 49–51.CrossRefGoogle Scholar
  25. 25.
    Hwang, D. J., Roberts, I. M., & Wilson, T. M. (1994). Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proceedings of the National Academy of Science of the United States of America, 91, 9067–9071.CrossRefGoogle Scholar
  26. 26.
    Hou, L., Wu, H., Xu, L., & Yang, F. (2009). Expression and self-assembly of virus-like particles of infectious hypodermal and hematopoietic necrosis virus in Escherichia coli. Archives of Virology, 154, 547–553.CrossRefGoogle Scholar
  27. 27.
    Kalnciema, I., Skrastina, D., Ose, V., Pumpens, P. & Zeltins, A. (2011). Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Molecular Biotechnology. doi: 10.1007/s12033-011-9480-9.
  28. 28.
    Brown, S. D., Fiedler, J. D., & Finn, M. G. (2009). Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry, 48, 11155–11157.CrossRefGoogle Scholar
  29. 29.
    Rogel, A., Benvenisti, L., Sela, I., Edelbaum, O., Tanne, E., Shachar, Y., et al. (2003). Vaccination with E. coli recombinant empty viral particles of infectious bursal disease virus (IBDV) confer protection. Virus Genes, 27, 169–175.CrossRefGoogle Scholar
  30. 30.
    Hammond, R. W., & Hammond, J. (2010). Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. Virus Research, 147, 208–215.CrossRefGoogle Scholar
  31. 31.
    Chen, X. S., Garcea, R. L., Goldberg, I., Casini, G., & Harrison, S. C. (2000). Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Molecular Cell, 5, 557–567.CrossRefGoogle Scholar
  32. 32.
    Middelberg, A. P., Rivera-Hernandez, T., Wibowo, N., Lua, L. H., Fan, Y., Magor, G., et al. (2011). A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 29, 7154–7162.CrossRefGoogle Scholar
  33. 33.
    Lee, C. D., Yan, Y. P., Liang, S. M., & Wang, T. F. (2009). Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. Journal of Biomedical Science, 16, 69.CrossRefGoogle Scholar
  34. 34.
    Ju, H., Wei, N., Wang, Q., Wang, C., Jing, Z., Guo, L., et al. (2011). Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose. Biochemical and Biophysical Research Communications, 409, 131–136.CrossRefGoogle Scholar
  35. 35.
    Cortes-Perez, N. G., Kharrat, P., Langella, P., & Bermúdez-Humarán, L. G. (2009). Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium. BMC Research Notes, 2, 167.CrossRefGoogle Scholar
  36. 36.
    Phelps, J. P., Dao, P., Jin, H., & Rasochova, L. (2007). Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens. Journal of Biotechnology, 128, 290–296.CrossRefGoogle Scholar
  37. 37.
    Legendre, D., & Fastrez, J. (2005). Production in Saccharomyces cerevisiae of MS2 virus-like particles packaging functional heterologous mRNAs. Journal of Biotechnology, 117, 183–194.CrossRefGoogle Scholar
  38. 38.
    Freivalds, J., Dislers, A., Ose, V., Skrastina, D., Cielens, I., Pumpens, P., et al. (2006). Assembly of bacteriophage Qbeta virus-like particles in yeast Saccharomyces cerevisiae and Pichia pastoris. Journal of Biotechnology, 123, 297–303.CrossRefGoogle Scholar
  39. 39.
    Freivalds, J., Rūmnieks, J., Ose, V., Renhofa, R., & Kazāks, A. (2008). High-level expression and purification of bacteriophage GA virus-like particles from yeast Saccharomyces cerevisiae and Pichia pastoris. Acta Universitatis Latviensis, 745, 75–85.Google Scholar
  40. 40.
    Burns, N. R., Saibil, H. R., White, N. S., Pardon, J. F., Timmins, P. A., Richardson, S. M., et al. (1992). Symmetry, flexibility and permeability in the structure of yeast retrotransposon virus-like particles. EMBO Journal, 11, 1155–1164.Google Scholar
  41. 41.
    Powilleit, F., Breinig, T., & Schmitt, M. J. (2007). Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression. PLoS ONE, 2(5), e415.CrossRefGoogle Scholar
  42. 42.
    Krol, M. A., Olson, N. H., Tate, J., Johnson, J. E., Baker, T. S., & Ahlquist, P. (1999). RNA-controlled polymorphism in the in vivo assembly of 180-subunit and 120-subunit virions from a single capsid protein. Proceedings of the National Academy of Science of the United States of America, 96, 13650–13655.CrossRefGoogle Scholar
  43. 43.
    Brumfield, S., Willits, D., Tang, L., Johnson, J. E., Douglas, T., & Young, M. (2004). Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. Journal of General Virology, 85, 1049–1053.CrossRefGoogle Scholar
  44. 44.
    Freivalds, J., Dislers, A., Ose, V., Pumpens, P., Tars, K., & Kazaks, A. (2011). Highly efficient production of phosphorylated hepatitis B core particles in yeast Pichia pastoris. Protein Expression and Purification, 75, 218–224.CrossRefGoogle Scholar
  45. 45.
    Hofmann, K. J., Cook, J. C., Joyce, J. G., Brown, D. R., Schultz, L. D., George, H. A., et al. (1995). Sequence determination of human papillomavirus type 6a and assembly of virus-like particles in Saccharomyces cerevisiae. Virology, 209, 506–518.CrossRefGoogle Scholar
  46. 46.
    Juozapaitis, M., Serva, A., Kucinskaite, I., Zvirbliene, A., Slibinskas, R., Staniulis, J., et al. (2007). Generation of menangle virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. Journal of Biotechnology, 130, 441–447.CrossRefGoogle Scholar
  47. 47.
    Janowicz, Z. A., Melber, K., Merckelbach, A., Jacobs, E., Harford, N., Comberbach, M., et al. (1991). Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast, 7, 431–443.CrossRefGoogle Scholar
  48. 48.
    Rodríguez-Limas, W. A., Tyo, K. E., Nielsen, J., Ramírez, O. T., & Palomares, L. A. (2011). Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae. Microbial Cell Factories, 10, 33.CrossRefGoogle Scholar
  49. 49.
    Morikawa, Y., Goto, T., Yasuoka, D., Momose, F., & Matano, T. (2007). Defect of human immunodeficiency virus type 2 Gag assembly in Saccharomyces cerevisiae. Journal of Virology, 81, 9911–9921.CrossRefGoogle Scholar
  50. 50.
    Lünsdorf, H., Gurramkonda, C., Adnan, A., Khanna, N., & Rinas, U. (2011). Virus-like particle production with yeast: Ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the hepatitis B surface antigen. Microbial Cell Factories, 10, 48.CrossRefGoogle Scholar
  51. 51.
    Kato, T., Deo, V. K., & Park, E. Y. (2012). Functional virus-like particles production using silkworm and their application in life science. Journal of Biotechnology & Biomaterials, S9, 001.Google Scholar
  52. 52.
    Vicente, T., Roldão, A., Peixoto, C., Carrondo, M. J., & Alves, P. M. (2011). Large-scale production and purification of VLP-based vaccines. Journal of Invertebrate Pathology, 107, S42–S48.CrossRefGoogle Scholar
  53. 53.
    Sokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M., & Aucoin, M. G. (2012). Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 30, 766–781.CrossRefGoogle Scholar
  54. 54.
    Tatman, J. D., Preston, V. G., Nicholson, P., Elliott, R. M., & Rixon, F. J. (1994). Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. Journal of General Virology, 75(Pt 5), 1101–1113.CrossRefGoogle Scholar
  55. 55.
    Pushko, P., Tumpey, T. M., Bu, F., Knell, J., Robinson, R., & Smith, G. (2005). Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine, 23, 5751–5759.CrossRefGoogle Scholar
  56. 56.
    Latham, T., & Galarza, J. M. (2001). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. Journal of Virology, 75, 6154–6165.CrossRefGoogle Scholar
  57. 57.
    Metz, S. W., Feenstra, F., Villoing, S., van Hulten, M. C., van Lent, J. W., Koumans, J., et al. (2011). Low temperature-dependent salmonid alphavirus glycoprotein processing and recombinant virus-like particle formation. PLoS ONE, 6(10), e25816.CrossRefGoogle Scholar
  58. 58.
    Saunders, K., Sainsbury, F., & Lomonossoff, G. P. (2009). Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology, 393, 329–337.CrossRefGoogle Scholar
  59. 59.
    Chung, Y. C., Huang, J. H., Lai, C. W., Sheng, H. C., Shih, S. R., Ho, M. S., et al. (2006). Expression, purification and characterization of enterovirus-71 virus-like particles. World Journal of Gastroenterology, 12, 921–927.Google Scholar
  60. 60.
    Molinari, P., Peralta, A., & Taboga, O. (2008). Production of rotavirus-like particles in Spodoptera frugiperda larvae. Journal of Virological Methods, 147, 364–367.CrossRefGoogle Scholar
  61. 61.
    Yao, L., Wang, S., Su, S., Yao, N., He, J., Peng, L., et al. (2012). Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS ONE, 7(3), e32510.CrossRefGoogle Scholar
  62. 62.
    Rybicki, E. (2010). Plant-made vaccines for humans and animals. Plant Biotechnology Journal, 8, 620–637.CrossRefGoogle Scholar
  63. 63.
    Zeltins, A. (2009). Plant virus biotechnology platforms for expression of medicinal proteins. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 481–517). Boca Raton: CRC Press.Google Scholar
  64. 64.
    Lai, H., & Chen, Q. (2012). Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant Cell Reports, 31(3), 573–584.CrossRefGoogle Scholar
  65. 65.
    Tacket, C. O. (2009). Plant-based oral vaccines: Results of human trials. Current Topics in Microbiology and Immunology, 332, 103–117.CrossRefGoogle Scholar
  66. 66.
    Gomez-Lim, M. A. (2009). Production of pharmaceutical compounds in plants. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 445–479). Boca Raton: CRC Press.Google Scholar
  67. 67.
    Mason, H. S., & Herbst-Kralovetz, M. M. (2012). Plant-derived antigens as mucosal vaccines. Current Topics in Microbiology and Immunology, 354, 101–120.CrossRefGoogle Scholar
  68. 68.
    Gleba, Y., Klimyuk, V., & Marillonnet, S. (2007). Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology, 18, 134–141.CrossRefGoogle Scholar
  69. 69.
    Lomonossoff, G. P. & Evans, D.J. (2011). Applications of Plant Viruses in Bionanotechnology. Current Topics in Microbiology and Immunology. doi: 10.1007/82_2011_184.
  70. 70.
    Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22, 1393–1398.CrossRefGoogle Scholar
  71. 71.
    Walsh, G. (2006). Biopharmaceutical benchmarks 2006. Nature Biotechnology, 24, 769–776.CrossRefGoogle Scholar
  72. 72.
    Wu, C. Y., Yeh, Y. C., Yang, Y. C., Chou, C., Liu, M. T., Wu, H. S., et al. (2010). Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS ONE, 5(3), e9784.CrossRefGoogle Scholar
  73. 73.
    Mena, I., Vivo, A., Pérez, E., & Portela, A. (1996). Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids. Journal of Virology, 70, 5016–5024.Google Scholar
  74. 74.
    Akahata, W., Yang, Z. Y., Andersen, H., Sun, S., Holdaway, H. A., Kong, W. P., et al. (2010). A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nature Medicine, 16, 334–338.CrossRefGoogle Scholar
  75. 75.
    Carlson, E. D., Gan, R., Hodgman, C. E. & Jewett, M. C. (2011). Cell-free protein synthesis: Applications come of age. Biotechnology Advances. doi: 10.1016/j.biotechadv.2011.09.016.
  76. 76.
    Smith, M. T., Varner, C. T., Bush, D. B., & Bundy, B. C. (2012). The incorporation of the A2 protein to produce novel Qβ virus-like particles using cell-free protein synthesis. Biotechnology Progress, 28, 549–555.CrossRefGoogle Scholar
  77. 77.
    Bundy, B. C., & Swartz, J. R. (2011). Efficient disulfide bond formation in virus-like particles. Journal of Biotechnology, 154, 230–239.CrossRefGoogle Scholar
  78. 78.
    Patel, K. G., & Swartz, J. R. (2011). Surface functionalization of virus-like particles by direct conjugation using azide–alkyne click chemistry. Bioconjugate Chemistry, 22, 376–387.CrossRefGoogle Scholar
  79. 79.
    Vicente, T., Mota, J. P., Peixoto, C., Alves, P. M., & Carrondo, M. J. (2011). Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnology Advances, 29, 869–878.CrossRefGoogle Scholar
  80. 80.
    Cull, M., & McHenry, C. S. (1990). Preparation of extracts from prokaryotes. Methods in Enzymology, 182, 147–153.CrossRefGoogle Scholar
  81. 81.
    Salazar, O., & Asenjo, J. A. (2007). Enzymatic lysis of microbial cells. Biotechnology Letters, 29, 985–994.CrossRefGoogle Scholar
  82. 82.
    Hardy, E., Martínez, E., Diago, D., Díaz, R., González, D., & Herrera, L. (2000). Large-scale production of recombinant hepatitis B surface antigen from Pichia pastoris. Journal of Biotechnology, 77, 157–167.CrossRefGoogle Scholar
  83. 83.
    Zhao, Q., Modis, Y., High, K., Towne, V., Meng, Y., Wang, Y., et al. (2012). Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virology Journal, 9, 52.CrossRefGoogle Scholar
  84. 84.
    Lewis, G. D., & Metcalf, T. G. (1988). Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Applied and Environmental Microbiology, 54, 1983–1988.Google Scholar
  85. 85.
    Birnbaum, F., & Nassal, M. (1990). Hepatitis B virus nucleocapsid assembly: Primary structure requirements in the core protein. Journal of Virology, 64, 3319–3330.Google Scholar
  86. 86.
    Wróbel, B., Yosef, Y., Oppenheim, A. B., & Oppenheim, A. (2000). Production and purification of SV40 major capsid protein (VP1) in Escherichia coli strains deficient for the GroELS chaperone machine. Journal of Biotechnology, 84, 285–289.CrossRefGoogle Scholar
  87. 87.
    White, L. J., Hardy, M. E., & Estes, M. K. (1997). Biochemical characterization of a smaller form of recombinant Norwalk virus capsids assembled in insect cells. Journal of Virology, 71, 8066–8072.Google Scholar
  88. 88.
    Branco, L. M., Grove, J. N., Geske, F. J., Boisen, M. L., Muncy, I. J., Magliato, S. A., et al. (2010). Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virology Journal, 7, 279.CrossRefGoogle Scholar
  89. 89.
    Porterfield, J. Z., & Zlotnick, A. (2010). A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance. Virology, 407, 281–288.CrossRefGoogle Scholar
  90. 90.
    Goodridge, L., Goodridge, C., Wu, J., Griffiths, M., & Pawliszyn, J. (2004). Isoelectric point determination of norovirus virus-like particles by capillary isoelectric focusing with whole column imaging detection. Analytical Chemistry, 76, 48–52.CrossRefGoogle Scholar
  91. 91.
    Hewat, E. A., Booth, T. F., Loudon, P. T., & Roy, P. (1992). Three-dimensional reconstruction of baculovirus expressed bluetongue virus core-like particles by cryo-electron microscopy. Virology, 189, 10–20.CrossRefGoogle Scholar
  92. 92.
    Fuller, S. D., Wilk, T., Gowen, B. E., Kräusslich, H. G., & Vogt, V. M. (1997). Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Current Biology, 7, 729–738.CrossRefGoogle Scholar
  93. 93.
    Yu, X., Qiao, M., Atanasov, I., Hu, Z., Kato, T., Liang, T. J., et al. (2007). Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology, 367, 126–134.CrossRefGoogle Scholar
  94. 94.
    Voss, J. E., Vaney, M. C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., et al. (2010). Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 468, 709–712.CrossRefGoogle Scholar
  95. 95.
    Kumar, S., Ochoa, W., Singh, P., Hsu, C., Schneemann, A., Manchester, M., et al. (2009). Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design. Virology, 388, 185–190.CrossRefGoogle Scholar
  96. 96.
    Crowther, R. A. (2010). From envelopes to atoms: The remarkable progress of biological electron microscopy. Advances in Protein Chemistry and Structural Biology, 81, 1–32.CrossRefGoogle Scholar
  97. 97.
    Goldsmith, C. S., & Miller, S. E. (2009). Modern uses of electron microscopy for detection of viruses. Clinical Microbiology Reviews, 22, 552–563.CrossRefGoogle Scholar
  98. 98.
    Persson, M., Tars, K., & Liljas, L. (2008). The capsid of the small RNA phage PRR1 is stabilized by metal ions. Journal of Molecular Biology, 383, 914–922.CrossRefGoogle Scholar
  99. 99.
    Plevka, P., Kazaks, A., Voronkova, T., Kotelovica, S., Dishlers, A., Liljas, L., et al. (2009). The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly. Journal of Molecular Biology, 391, 635–647.CrossRefGoogle Scholar
  100. 100.
    Savithri, H. S., & Murthy, M. R. N. (2010). Structure and assembly of Sesbania mosaic virus. Current Science, 98, 346–351.Google Scholar
  101. 101.
    Lane, S. W., Dennis, C. A., Lane, C. L., Trinh, C. H., Rizkallah, P. J., Stockley, P. G., et al. (2011). Construction and crystal structure of recombinant STNV capsids. Journal of Molecular Biology, 413, 41–50.CrossRefGoogle Scholar
  102. 102.
    Ausar, S. F., Foubert, T. R., Hudson, M. H., Vedvick, T. S., & Middaugh, C. R. (2006). Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. Journal of Biological Chemistry, 281, 19478–19488.CrossRefGoogle Scholar
  103. 103.
    Cuellar, J. L., Meinhoevel, F., Hoehne, M., & Donath, E. (2010). Size and mechanical stability of norovirus capsids depend on pH: A nanoindentation study. Journal of General Virology, 91, 2449–2456.CrossRefGoogle Scholar
  104. 104.
    Rumnieks, J., Ose, V., Tars, K., Dislers, A., Strods, A., Cielens, I., et al. (2009). Assembly of mixed rod-like and spherical particles from group I and II RNA bacteriophage coat proteins. Virology, 391, 187–194.CrossRefGoogle Scholar
  105. 105.
    Lang, R., Winter, G., Vogt, L., Zurcher, A., Dorigo, B., & Schimmele, B. (2009). Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Development and Industrial Pharmacy, 35, 83–97.CrossRefGoogle Scholar
  106. 106.
    Kissmann, J., Joshi, S. B., Haynes, J. R., Dokken, L., Richardson, C., & Middaugh, C. R. (2011). H1N1 influenza virus-like particles: Physical degradation pathways and identification of stabilizers. Journal of Pharmaceutical Sciences, 100, 634–645.CrossRefGoogle Scholar
  107. 107.
    Bragard, C., Duncan, G. H., Wesley, S. V., Naidu, R. A., & Mayo, M. A. (2000). Virus-like particles assemble in plants and bacteria expressing the coat protein gene of Indian peanut clump virus. Journal of General Virology, 81, 267–272.Google Scholar
  108. 108.
    Lokesh, G. L., Gowri, T. D., Satheshkumar, P. S., Murthy, M. R., & Savithri, H. S. (2002). A molecular switch in the capsid protein controls the particle polymorphism in an icosahedral virus. Virology, 292, 211–223.CrossRefGoogle Scholar
  109. 109.
    Hema, M., Subba Reddy, C. V., Savithri, H. S., & Sreenivasulu, P. (2008). Assembly of recombinant coat protein of sugarcane streak mosaic virus into potyvirus-like particles. Indian Journal of Experimental Biology, 46, 793–796.Google Scholar
  110. 110.
    Routh, A., Domitrovic, T., & Johnson, J. E. (2012). Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus. Proceedings of the National Academy of Science of the United States of America, 109, 1907–1912.CrossRefGoogle Scholar
  111. 111.
    Bunka, D. H., Lane, S. W., Lane, C. L., Dykeman, E. C., Ford, R. J., Barker, A. M., et al. (2011). Degenerate RNA packaging signals in the genome of Satellite Tobacco Necrosis Virus: Implications for the assembly of a T = 1 capsid. Journal of Molecular Biology, 413, 51–65.CrossRefGoogle Scholar
  112. 112.
    Kaczmarczyk, S. J., Sitaraman, K., Young, H. A., Hughes, S. H., & Chatterjee, D. K. (2011). Protein delivery using engineered virus-like particles. Proceedings of the National Academy of Science of the United States of America, 108, 16998–17003.CrossRefGoogle Scholar
  113. 113.
    Thomas, C. E., Ehrhardt, A., & Kay, M. A. (2003). Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 4, 346–358.CrossRefGoogle Scholar
  114. 114.
    Storni, T., Ruedl, C., Schwarz, K., Schwendener, R. A., Renner, W. A., & Bachmann, M. F. (2004). Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. Journal of Immunology, 172, 1777–1785.Google Scholar
  115. 115.
    Ng, B. C., Chan, S. T., Lin, J., & Tolbert, S. H. (2011). Using polymer conformation to control architecture in semiconducting polymer/viral capsid assemblies. ACS Nano, 5, 7730–7738.CrossRefGoogle Scholar
  116. 116.
    Newman, M., Chua, P. K., Tang, F. M., Su, P. Y., & Shih, C. (2009). Testing an electrostatic interaction hypothesis of hepatitis B virus capsid stability by using an in vitro capsid disassembly/reassembly system. Journal of Virology, 83, 10616–10626.CrossRefGoogle Scholar
  117. 117.
    Fang, C. Y., Lin, P. Y., Ou, W. C., Chen, P. L., Shen, C. H., Chang, D., et al. (2012). Analysis of the size of DNA packaged by the human JC virus-like particle. Journal of Virological Methods, 182, 87–92.CrossRefGoogle Scholar
  118. 118.
    Kaltgrad, E., O’Reilly, M. K., Liao, L., Han, S., Paulson, J. C., & Finn, M. G. (2008). On-virus construction of polyvalent glycan ligands for cell-surface receptors. Journal of the American Chemical Society, 130, 4578–4579.CrossRefGoogle Scholar
  119. 119.
    Strable, E., & Finn, M. G. (2009). Chemical modification of viruses and virus-like particles. Current Topics in Microbiology and Immunology, 327, 1–21.CrossRefGoogle Scholar
  120. 120.
    Spohn, G., Guler, R., Johansen, P., Keller, I., Jacobs, M., Beck, M., et al. (2007). A virus-like particle-based vaccine selectively targeting soluble TNF-alpha protects from arthritis without inducing reactivation of latent tuberculosis. Journal of Immunology, 178, 7450–7457.Google Scholar
  121. 121.
    Bachmann, M. F., & Jennings, G. T. (2011). Therapeutic vaccines for chronic diseases: Successes and technical challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2815–2822.CrossRefGoogle Scholar
  122. 122.
    Spohn, G., Jennings, G. T., Martina, B. E., Keller, I., Beck, M., Pumpens, P., et al. (2010). A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virology Journal, 7, 146.CrossRefGoogle Scholar
  123. 123.
    Pastori, C., Tudor, D., Diomede, L., Drillet, A. S., Jegerlehner, A., Röhn, T. A., et al. (2012). Virus like particle based strategy to elicit HIV-protective antibodies to the alpha-helic regions of gp41. Virology, 431, 1–11.CrossRefGoogle Scholar
  124. 124.
    Smith, M. L., Lindbo, J. A., Dillard-Telm, S., Brosio, P. M., Lasnik, A. B., McCormick, A. A., et al. (2006). Modified Tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology, 348, 475–488.CrossRefGoogle Scholar
  125. 125.
    Natilla, A., & Hammond, R. W. (2011). Maize rayado fino virus virus-like particles expressed in tobacco plants: A new platform for cysteine selective bioconjugation peptide display. Journal of Virological Methods, 178, 209–215.CrossRefGoogle Scholar
  126. 126.
    Minten, I. J., Claessen, V. I., Blank, K., Rowan, A. E., Nolte, R. J. M., & Cornelissen, J. J. (2011). Catalytic capsids: The art of confinement. Chemical Science, 2, 358–362.CrossRefGoogle Scholar
  127. 127.
    Minten, I. J., Hendriks, L. J., Nolte, R. J., & Cornelissen, J. J. (2009). Controlled encapsulation of multiple proteins in virus capsids. Journal of the American Chemical Society, 131, 17771–17773.CrossRefGoogle Scholar
  128. 128.
    Ohtake, N., Niikura, K., Suzuki, T., Nagakawa, K., Mikuni, S., Matsuo, Y., et al. (2010). Low pH-triggered model drug molecule release from virus-like particles. ChemBioChem, 11, 959–962.CrossRefGoogle Scholar
  129. 129.
    Walker, A., Skamel, C., & Nassal, M. (2011). SplitCore: An exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Scientific Reports, 1, 5.CrossRefGoogle Scholar
  130. 130.
    Werner, S., Marillonnet, S., Hause, G., Klimyuk, V., & Gleba, Y. (2006). Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proceedings of the National Academy of Science of the United States of America, 103, 17678–17683.CrossRefGoogle Scholar
  131. 131.
    Gleiter, S., & Lilie, H. (2005). Cell-type specific targeting and gene expression using a variant of polyoma VP1 virus-like particles. Biological Chemistry, 384, 247–255.Google Scholar
  132. 132.
    Park, J. S., Cho, M. K., Lee, E. J., Ahn, K. Y., Lee, K. E., Jung, J. H., et al. (2009). A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nature Nanotechnology, 4, 259–264.CrossRefGoogle Scholar
  133. 133.
    Cardinale, D., Carette, N., & Michon, T. (2012). Virus scaffolds as enzyme nano-carriers. Trends in Biotechnology, 30, 369–376.CrossRefGoogle Scholar
  134. 134.
    Mokili, J. L., Rohwer, F., & Dutilh, B. E. (2012). Metagenomics and future perspectives in virus discovery. Current Opinion in Virology, 2, 63–77.CrossRefGoogle Scholar
  135. 135.
    Janssens, M. E., Geysen, D., Broos, K., De Goeyse, I., Robbens, J., Van Petegem, F., et al. (2010). Folding properties of the hepatitis B core as a carrier protein for vaccination research. Amino Acids, 38, 1617–1626.CrossRefGoogle Scholar
  136. 136.
    Hulo, C., de Castro, E., Masson, P., Bougueleret, L., Bairoch, A., Xenarios, I., et al. (2011). ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Research, 39, D576–D582.CrossRefGoogle Scholar
  137. 137.
    Tremblay, M. H., Majeau, N., Gagné, M. E., Lecours, K., Morin, H., Duvignaud, J. B., et al. (2006). Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS Journal, 273, 14–25.CrossRefGoogle Scholar
  138. 138.
    Caballero, S., Guix, S., Ribes, E., Bosch, A., & Pintó, R. M. (2004). Structural requirements of astrovirus virus-like particles assembled in insect cells. Journal of Virology, 78, 13285–13292.CrossRefGoogle Scholar
  139. 139.
    Farnós, O., Fernández, E., Chiong, M., Parra, F., Joglar, M., Méndez, L., et al. (2009). Biochemical and structural characterization of RHDV capsid protein variants produced in Pichia pastoris: Advantages for immunization strategies and vaccine implementation. Antiviral Research, 81, 25–36.CrossRefGoogle Scholar
  140. 140.
    Lu, X. Y., Chen, Y., Bai, B. K., Hu, H., Tao, L., Yang, J., et al. (2007). Immune responses against SARS CoV induced by virus-like particles in mice. Immunology, 122, 496–502.CrossRefGoogle Scholar
  141. 141.
    Ohtaki, N., Takahashi, H., Kaneko, K., Gomi, Y., Ishikawa, T., Higashi, Y., et al. (2010). Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. Vaccine, 28, 6588–6596.CrossRefGoogle Scholar
  142. 142.
    Li, T. C., Yamakawa, Y., Suzuki, K., Tatsumi, M., Razak, M. A., Uchida, T., et al. (1997). Expression and self-assembly of empty virus-like particles of hepatitis E virus. Journal of Virology, 71, 7207–7213.Google Scholar
  143. 143.
    Cielens, I., Ose, V., Petrovskis, I., Strelnikova, A., Renhofa, R., Kozlovska, T., et al. (2000). Mutilation of RNA phage Qbeta virus-like particles: From icosahedrons to rods. FEBS Letters, 482, 261–264.CrossRefGoogle Scholar
  144. 144.
    Lamb, J. W., Duncan, G. H., Reavy, B., Gildow, F. E., Mayo, M. A., & Hay, R. T. (1996). Assembly of virus-like particles in insect cells infected with a baculovirus containing a modified coat protein gene of potato leafroll luteovirus. Journal of General Virology, 77, 1349–1358.CrossRefGoogle Scholar
  145. 145.
    Schneemann, A., Dasgupta, R., Johnson, J. E., & Rueckert, R. R. (1993). Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of flock house virus, a nodavirus. Journal of Virology, 67, 2756–2763.Google Scholar
  146. 146.
    Luo, L., Li, Y., & Kang, C. Y. (1990). Expression of gag precursor protein and secretion of virus-like gag particles of HIV-2 from recombinant baculovirus-infected insect cells. Virology, 179, 874–880.CrossRefGoogle Scholar
  147. 147.
    Shanks, M., & Lomonossoff, G. P. (2000). Co-expression of the capsid proteins of Cowpea mosaic virus in insect cells leads to the formation of virus-like particles. Journal of General Virology, 81, 3093–3097.Google Scholar
  148. 148.
    Pringle, F. M., Kalmakoff, J., & Ward, V. K. (2001). Analysis of the capsid processing strategy of Thosea asigna virus using baculovirus expression of virus-like particles. Journal of General Virology, 82, 259–266.Google Scholar
  149. 149.
    Sastri, M., Kekuuda, R., Gopinath, K., Ranjith Kumar, C. T., Jagath, J. R., & Savithri, H. S. (1997). Assembly of physalis mottle virus capsid protein in Escherichia coli and the role of amino and carboxy termini in the formation of the icosahedral particles. Journal of Molecular Biology, 272, 541–552.CrossRefGoogle Scholar
  150. 150.
    Li, C., Liu, F., Liang, M., Zhang, Q., Wang, X., Wang, T., et al. (2010). Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice. Vaccine, 28, 4294–4300.CrossRefGoogle Scholar
  151. 151.
    Warfield, K. L., Bosio, C. M., Welcher, B. C., Deal, E. M., Mohamadzadeh, M., Schmaljohn, A., et al. (2003). Ebola virus-like particles protect from lethal Ebola virus infection. Proceedings of the National Academy of Science of the United States of America, 100, 15889–15894.CrossRefGoogle Scholar
  152. 152.
    Walpita, P., Barr, J., Sherman, M., Basler, C. F., & Wang, L. (2011). Vaccine potential of Nipah virus-like particles. PLoS ONE, 6(4), e18437.CrossRefGoogle Scholar
  153. 153.
    Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P., & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. Journal of General Virology, 79, 1047–1054.Google Scholar
  154. 154.
    Fender, P., Ruigrok, R. W., Gout, E., Buffet, S., & Chroboczek, J. (1997). Adenovirus dodecahedron, a new vector for human gene transfer. Nature Biotechnology, 15, 52–56.CrossRefGoogle Scholar
  155. 155.
    Yin, S., Sun, S., Yang, S., Shang, Y., Cai, X., & Liu, X. (2010). Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli. Virology Journal, 7, 166.CrossRefGoogle Scholar
  156. 156.
    Newcomb, W. W., Homa, F. L., Thomsen, D. R., Trus, B. L., Cheng, N., Steven, A., et al. (1999). Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. Journal of Virology, 73, 4239–4250.Google Scholar
  157. 157.
    Saliki, J. T., Mizak, B., Flore, H. P., Gettig, R. R., Burand, J. P., Carmichael, L. E., et al. (1992). Canine parvovirus empty capsids produced by expression in a baculovirus vector: Use in analysis of viral properties and immunization of dogs. Journal of General Virology, 73, 369–374.CrossRefGoogle Scholar
  158. 158.
    Sasnauskas, K., Bulavaite, A., Hale, A., Jin, L., Knowles, W. A., Gedvilaite, A., et al. (2002). Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology, 45, 308–317.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Latvian Biomedical Research and Study CentreRigaLatvia

Personalised recommendations