Skip to main content

Advertisement

Log in

Construction and Characterization of Virus-Like Particles: A Review

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Over the last three decades, virus-like particles (VLPs) have evolved to become a widely accepted technology, especially in the field of vaccinology. In fact, some VLP-based vaccines are currently used as commercial medical products, and other VLP-based products are at different stages of clinical study. Several remarkable advantages have been achieved in the development of VLPs as gene therapy tools and new nanomaterials. The analysis of published data reveals that at least 110 VLPs have been constructed from viruses belonging to 35 different families. This review therefore discusses the main principles in the cloning of viral structural genes, the relevant host systems and the purification procedures that have been developed. In addition, the methods that are used to characterize the structural integrity, stability, and components, including the encapsidated nucleic acids, of newly synthesized VLPs are analyzed. Moreover, some of the modifications that are required to construct VLP-based carriers of viral origin with defined properties are discussed, and examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Pumpens, P., & Grens, E. (2002). Artificial genes for chimeric virus-like particles. In Y. E. Khudyakov & H. A. Fields (Eds.), Artificial DNA: Methods and applications (pp. 249–327). Boca Raton: CRC Press.

    Google Scholar 

  2. Pumpens, P., Ulrich, R., Sasnauskas, K., Kazaks, A., Ose, V., & Grens, E. (2009). Construction of novel vaccines on the basis of the virus-like particles: Hepatitis B virus proteins as vaccine carriers. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 205–248). Boca Raton: CRC Press.

    Google Scholar 

  3. Frazer, I. H. (2004). Prevention of cervical cancer through papillomavirus vaccination. Nature Reviews Immunology, 4, 46–54.

    Article  CAS  Google Scholar 

  4. Liu, F., Ge, S., Li, L., Wu, X., Liu, Z., & Wang, Z. (2012). Virus-like particles: Potential veterinary vaccine immunogens. Research in Veterinary Science, 93, 553–559.

    Article  CAS  Google Scholar 

  5. Roldão, A., Mellado, M. C., Castilho, L. R., Carrondo, M. J., & Alves, P. M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9, 1149–1176.

    Article  Google Scholar 

  6. Bachmann, M. F., & Zinkernagel, R. M. (1997). Neutralizing antiviral B cell responses. Annual Review of Immunology, 15, 235–270.

    Article  CAS  Google Scholar 

  7. Brun, A., Bárcena, J., Blanco, E., Borrego, B., Dory, D., Escribano, J. M., et al. (2011). Current strategies for subunit and genetic viral veterinary vaccine development. Virus Research, 157, 1–12.

    Article  CAS  Google Scholar 

  8. Bachmann, M. F., & Dyer, M. R. (2004). Therapeutic vaccination for chronic diseases: A new class of drugs in sight. Nature Reviews Drug Discovery, 3, 81–88.

    Article  CAS  Google Scholar 

  9. Bachmann, M. F., Rohrer, U. H., Kündig, T. M., Bürki, K., Hengartner, H., & Zinkernagel, R. M. (1993). The influence of antigen organization on B cell responsiveness. Science, 262, 1448–1451.

    Article  CAS  Google Scholar 

  10. Lamarre, B., & Ryadnov, M. G. (2011). Self-assembling viral mimetics: One long journey with short steps. Macromolecular Bioscience, 8, 503–513.

    Article  CAS  Google Scholar 

  11. Seow, Y., & Wood, M. J. (2009). Biological gene delivery vehicles: Beyond viral vectors. Molecular Therapy, 17, 767–777.

    Article  CAS  Google Scholar 

  12. Soto, C. M., & Ratna, B. R. (2010). Virus hybrids as nanomaterials for biotechnology. Current Opinion in Biotechnology, 21, 426–438.

    Article  CAS  Google Scholar 

  13. Lee, L. A., Niu, Z., & Wang, Q. (2009). Viruses and virus-like protein assemblies—chemically programmable nanoscale building blocks. Nano Research, 2, 349–364.

    Article  CAS  Google Scholar 

  14. Pattenden, L. K., Middelberg, A. P., Niebert, M., & Lipin, D. I. (2005). Towards the preparative and large-scale precision manufacture of virus-like particles. Trends in Biotechnology, 23, 523–529.

    Article  CAS  Google Scholar 

  15. Hoenen, T., Groseth, A., de Kok-Mercado, F., Kuhn, J. H., & Wahl-Jensen, V. (2011). Minigenomes, transcription and replication competent virus-like particles and beyond: Reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Research, 91, 195–208.

    Article  CAS  Google Scholar 

  16. Saccardo, P., Villaverde, A., & González-Montalbán, N. (2009). Peptide-mediated DNA condensation for non-viral gene therapy. Biotechnology Advances, 27, 432–438.

    Article  CAS  Google Scholar 

  17. Burrell, C. J., MacKay, P., Greenaway, P. J., Hofschneider, P. H., & Murray, K. (1979). Expression in Escherichia coli of hepatitis B virus DNA sequences cloned in plasmid pBR322. Nature, 279, 43–47.

    Article  CAS  Google Scholar 

  18. Valenzuela, P., Medina, A., Rutter, W. J., Ammerer, G., & Hall, B. D. (1982). Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature, 298, 347–350.

    Article  CAS  Google Scholar 

  19. Haynes, J. R., Cunningham, J., von Seefried, A., Lennick, M., Garvin, R. T., & Shen, S. H. (1986). Development of a genetically-engineered, candidate polio vaccine employing the selfassembling properties of the tobacco mosaic virus coat protein. Biotechnology, 4, 637–641.

    Article  CAS  Google Scholar 

  20. Cohen, B. J., & Richmond, J. E. (1982). Electron microscopy of hepatitis B core antigen synthesized in E. coli. Nature, 296, 677–678.

    Article  CAS  Google Scholar 

  21. Chuan, Y. P., Lua, L. H., & Middelberg, A. P. (2008). High-level expression of soluble viral structural protein in Escherichia coli. Journal of Biotechnology, 20, 64–71.

    Article  CAS  Google Scholar 

  22. Sánchez-Rodríguez, S. P., Münch-Anguiano, L., Echeverría, O., Vázquez-Nin, G., Mora-Pale, M., Dordick, J. S., et al. (2012). Human parvovirus B19 virus-like particles: In vitro assembly and stability. Biochimie, 94, 870–878.

    Article  CAS  Google Scholar 

  23. Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S., & Young, M. J. (1995). In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology, 10, 486–494.

    Article  Google Scholar 

  24. Xu, Y., Ye, J., Liu, H., Cheng, E., Yang, Y., Wang, W., et al. (2008). DNA-templated CMV viral capsid proteins assemble into nanotubes. Chemical Communications, 1, 49–51.

    Article  CAS  Google Scholar 

  25. Hwang, D. J., Roberts, I. M., & Wilson, T. M. (1994). Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proceedings of the National Academy of Science of the United States of America, 91, 9067–9071.

    Article  CAS  Google Scholar 

  26. Hou, L., Wu, H., Xu, L., & Yang, F. (2009). Expression and self-assembly of virus-like particles of infectious hypodermal and hematopoietic necrosis virus in Escherichia coli. Archives of Virology, 154, 547–553.

    Article  CAS  Google Scholar 

  27. Kalnciema, I., Skrastina, D., Ose, V., Pumpens, P. & Zeltins, A. (2011). Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Molecular Biotechnology. doi:10.1007/s12033-011-9480-9.

  28. Brown, S. D., Fiedler, J. D., & Finn, M. G. (2009). Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry, 48, 11155–11157.

    Article  CAS  Google Scholar 

  29. Rogel, A., Benvenisti, L., Sela, I., Edelbaum, O., Tanne, E., Shachar, Y., et al. (2003). Vaccination with E. coli recombinant empty viral particles of infectious bursal disease virus (IBDV) confer protection. Virus Genes, 27, 169–175.

    Article  CAS  Google Scholar 

  30. Hammond, R. W., & Hammond, J. (2010). Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. Virus Research, 147, 208–215.

    Article  CAS  Google Scholar 

  31. Chen, X. S., Garcea, R. L., Goldberg, I., Casini, G., & Harrison, S. C. (2000). Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Molecular Cell, 5, 557–567.

    Article  CAS  Google Scholar 

  32. Middelberg, A. P., Rivera-Hernandez, T., Wibowo, N., Lua, L. H., Fan, Y., Magor, G., et al. (2011). A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 29, 7154–7162.

    Article  CAS  Google Scholar 

  33. Lee, C. D., Yan, Y. P., Liang, S. M., & Wang, T. F. (2009). Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. Journal of Biomedical Science, 16, 69.

    Article  CAS  Google Scholar 

  34. Ju, H., Wei, N., Wang, Q., Wang, C., Jing, Z., Guo, L., et al. (2011). Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose. Biochemical and Biophysical Research Communications, 409, 131–136.

    Article  CAS  Google Scholar 

  35. Cortes-Perez, N. G., Kharrat, P., Langella, P., & Bermúdez-Humarán, L. G. (2009). Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium. BMC Research Notes, 2, 167.

    Article  CAS  Google Scholar 

  36. Phelps, J. P., Dao, P., Jin, H., & Rasochova, L. (2007). Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens. Journal of Biotechnology, 128, 290–296.

    Article  CAS  Google Scholar 

  37. Legendre, D., & Fastrez, J. (2005). Production in Saccharomyces cerevisiae of MS2 virus-like particles packaging functional heterologous mRNAs. Journal of Biotechnology, 117, 183–194.

    Article  CAS  Google Scholar 

  38. Freivalds, J., Dislers, A., Ose, V., Skrastina, D., Cielens, I., Pumpens, P., et al. (2006). Assembly of bacteriophage Qbeta virus-like particles in yeast Saccharomyces cerevisiae and Pichia pastoris. Journal of Biotechnology, 123, 297–303.

    Article  CAS  Google Scholar 

  39. Freivalds, J., Rūmnieks, J., Ose, V., Renhofa, R., & Kazāks, A. (2008). High-level expression and purification of bacteriophage GA virus-like particles from yeast Saccharomyces cerevisiae and Pichia pastoris. Acta Universitatis Latviensis, 745, 75–85.

    Google Scholar 

  40. Burns, N. R., Saibil, H. R., White, N. S., Pardon, J. F., Timmins, P. A., Richardson, S. M., et al. (1992). Symmetry, flexibility and permeability in the structure of yeast retrotransposon virus-like particles. EMBO Journal, 11, 1155–1164.

    CAS  Google Scholar 

  41. Powilleit, F., Breinig, T., & Schmitt, M. J. (2007). Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression. PLoS ONE, 2(5), e415.

    Article  CAS  Google Scholar 

  42. Krol, M. A., Olson, N. H., Tate, J., Johnson, J. E., Baker, T. S., & Ahlquist, P. (1999). RNA-controlled polymorphism in the in vivo assembly of 180-subunit and 120-subunit virions from a single capsid protein. Proceedings of the National Academy of Science of the United States of America, 96, 13650–13655.

    Article  CAS  Google Scholar 

  43. Brumfield, S., Willits, D., Tang, L., Johnson, J. E., Douglas, T., & Young, M. (2004). Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. Journal of General Virology, 85, 1049–1053.

    Article  CAS  Google Scholar 

  44. Freivalds, J., Dislers, A., Ose, V., Pumpens, P., Tars, K., & Kazaks, A. (2011). Highly efficient production of phosphorylated hepatitis B core particles in yeast Pichia pastoris. Protein Expression and Purification, 75, 218–224.

    Article  CAS  Google Scholar 

  45. Hofmann, K. J., Cook, J. C., Joyce, J. G., Brown, D. R., Schultz, L. D., George, H. A., et al. (1995). Sequence determination of human papillomavirus type 6a and assembly of virus-like particles in Saccharomyces cerevisiae. Virology, 209, 506–518.

    Article  CAS  Google Scholar 

  46. Juozapaitis, M., Serva, A., Kucinskaite, I., Zvirbliene, A., Slibinskas, R., Staniulis, J., et al. (2007). Generation of menangle virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. Journal of Biotechnology, 130, 441–447.

    Article  CAS  Google Scholar 

  47. Janowicz, Z. A., Melber, K., Merckelbach, A., Jacobs, E., Harford, N., Comberbach, M., et al. (1991). Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast, 7, 431–443.

    Article  CAS  Google Scholar 

  48. Rodríguez-Limas, W. A., Tyo, K. E., Nielsen, J., Ramírez, O. T., & Palomares, L. A. (2011). Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae. Microbial Cell Factories, 10, 33.

    Article  CAS  Google Scholar 

  49. Morikawa, Y., Goto, T., Yasuoka, D., Momose, F., & Matano, T. (2007). Defect of human immunodeficiency virus type 2 Gag assembly in Saccharomyces cerevisiae. Journal of Virology, 81, 9911–9921.

    Article  CAS  Google Scholar 

  50. Lünsdorf, H., Gurramkonda, C., Adnan, A., Khanna, N., & Rinas, U. (2011). Virus-like particle production with yeast: Ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the hepatitis B surface antigen. Microbial Cell Factories, 10, 48.

    Article  CAS  Google Scholar 

  51. Kato, T., Deo, V. K., & Park, E. Y. (2012). Functional virus-like particles production using silkworm and their application in life science. Journal of Biotechnology & Biomaterials, S9, 001.

    Google Scholar 

  52. Vicente, T., Roldão, A., Peixoto, C., Carrondo, M. J., & Alves, P. M. (2011). Large-scale production and purification of VLP-based vaccines. Journal of Invertebrate Pathology, 107, S42–S48.

    Article  CAS  Google Scholar 

  53. Sokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M., & Aucoin, M. G. (2012). Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 30, 766–781.

    Article  CAS  Google Scholar 

  54. Tatman, J. D., Preston, V. G., Nicholson, P., Elliott, R. M., & Rixon, F. J. (1994). Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. Journal of General Virology, 75(Pt 5), 1101–1113.

    Article  CAS  Google Scholar 

  55. Pushko, P., Tumpey, T. M., Bu, F., Knell, J., Robinson, R., & Smith, G. (2005). Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine, 23, 5751–5759.

    Article  CAS  Google Scholar 

  56. Latham, T., & Galarza, J. M. (2001). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. Journal of Virology, 75, 6154–6165.

    Article  CAS  Google Scholar 

  57. Metz, S. W., Feenstra, F., Villoing, S., van Hulten, M. C., van Lent, J. W., Koumans, J., et al. (2011). Low temperature-dependent salmonid alphavirus glycoprotein processing and recombinant virus-like particle formation. PLoS ONE, 6(10), e25816.

    Article  CAS  Google Scholar 

  58. Saunders, K., Sainsbury, F., & Lomonossoff, G. P. (2009). Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology, 393, 329–337.

    Article  CAS  Google Scholar 

  59. Chung, Y. C., Huang, J. H., Lai, C. W., Sheng, H. C., Shih, S. R., Ho, M. S., et al. (2006). Expression, purification and characterization of enterovirus-71 virus-like particles. World Journal of Gastroenterology, 12, 921–927.

    CAS  Google Scholar 

  60. Molinari, P., Peralta, A., & Taboga, O. (2008). Production of rotavirus-like particles in Spodoptera frugiperda larvae. Journal of Virological Methods, 147, 364–367.

    Article  CAS  Google Scholar 

  61. Yao, L., Wang, S., Su, S., Yao, N., He, J., Peng, L., et al. (2012). Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS ONE, 7(3), e32510.

    Article  CAS  Google Scholar 

  62. Rybicki, E. (2010). Plant-made vaccines for humans and animals. Plant Biotechnology Journal, 8, 620–637.

    Article  CAS  Google Scholar 

  63. Zeltins, A. (2009). Plant virus biotechnology platforms for expression of medicinal proteins. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 481–517). Boca Raton: CRC Press.

    Google Scholar 

  64. Lai, H., & Chen, Q. (2012). Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant Cell Reports, 31(3), 573–584.

    Article  CAS  Google Scholar 

  65. Tacket, C. O. (2009). Plant-based oral vaccines: Results of human trials. Current Topics in Microbiology and Immunology, 332, 103–117.

    Article  CAS  Google Scholar 

  66. Gomez-Lim, M. A. (2009). Production of pharmaceutical compounds in plants. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 445–479). Boca Raton: CRC Press.

    Google Scholar 

  67. Mason, H. S., & Herbst-Kralovetz, M. M. (2012). Plant-derived antigens as mucosal vaccines. Current Topics in Microbiology and Immunology, 354, 101–120.

    Article  CAS  Google Scholar 

  68. Gleba, Y., Klimyuk, V., & Marillonnet, S. (2007). Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology, 18, 134–141.

    Article  CAS  Google Scholar 

  69. Lomonossoff, G. P. & Evans, D.J. (2011). Applications of Plant Viruses in Bionanotechnology. Current Topics in Microbiology and Immunology. doi:10.1007/82_2011_184.

  70. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22, 1393–1398.

    Article  CAS  Google Scholar 

  71. Walsh, G. (2006). Biopharmaceutical benchmarks 2006. Nature Biotechnology, 24, 769–776.

    Article  CAS  Google Scholar 

  72. Wu, C. Y., Yeh, Y. C., Yang, Y. C., Chou, C., Liu, M. T., Wu, H. S., et al. (2010). Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS ONE, 5(3), e9784.

    Article  CAS  Google Scholar 

  73. Mena, I., Vivo, A., Pérez, E., & Portela, A. (1996). Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids. Journal of Virology, 70, 5016–5024.

    CAS  Google Scholar 

  74. Akahata, W., Yang, Z. Y., Andersen, H., Sun, S., Holdaway, H. A., Kong, W. P., et al. (2010). A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nature Medicine, 16, 334–338.

    Article  CAS  Google Scholar 

  75. Carlson, E. D., Gan, R., Hodgman, C. E. & Jewett, M. C. (2011). Cell-free protein synthesis: Applications come of age. Biotechnology Advances. doi:10.1016/j.biotechadv.2011.09.016.

  76. Smith, M. T., Varner, C. T., Bush, D. B., & Bundy, B. C. (2012). The incorporation of the A2 protein to produce novel Qβ virus-like particles using cell-free protein synthesis. Biotechnology Progress, 28, 549–555.

    Article  CAS  Google Scholar 

  77. Bundy, B. C., & Swartz, J. R. (2011). Efficient disulfide bond formation in virus-like particles. Journal of Biotechnology, 154, 230–239.

    Article  CAS  Google Scholar 

  78. Patel, K. G., & Swartz, J. R. (2011). Surface functionalization of virus-like particles by direct conjugation using azide–alkyne click chemistry. Bioconjugate Chemistry, 22, 376–387.

    Article  CAS  Google Scholar 

  79. Vicente, T., Mota, J. P., Peixoto, C., Alves, P. M., & Carrondo, M. J. (2011). Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnology Advances, 29, 869–878.

    Article  CAS  Google Scholar 

  80. Cull, M., & McHenry, C. S. (1990). Preparation of extracts from prokaryotes. Methods in Enzymology, 182, 147–153.

    Article  CAS  Google Scholar 

  81. Salazar, O., & Asenjo, J. A. (2007). Enzymatic lysis of microbial cells. Biotechnology Letters, 29, 985–994.

    Article  CAS  Google Scholar 

  82. Hardy, E., Martínez, E., Diago, D., Díaz, R., González, D., & Herrera, L. (2000). Large-scale production of recombinant hepatitis B surface antigen from Pichia pastoris. Journal of Biotechnology, 77, 157–167.

    Article  CAS  Google Scholar 

  83. Zhao, Q., Modis, Y., High, K., Towne, V., Meng, Y., Wang, Y., et al. (2012). Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virology Journal, 9, 52.

    Article  CAS  Google Scholar 

  84. Lewis, G. D., & Metcalf, T. G. (1988). Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Applied and Environmental Microbiology, 54, 1983–1988.

    CAS  Google Scholar 

  85. Birnbaum, F., & Nassal, M. (1990). Hepatitis B virus nucleocapsid assembly: Primary structure requirements in the core protein. Journal of Virology, 64, 3319–3330.

    CAS  Google Scholar 

  86. Wróbel, B., Yosef, Y., Oppenheim, A. B., & Oppenheim, A. (2000). Production and purification of SV40 major capsid protein (VP1) in Escherichia coli strains deficient for the GroELS chaperone machine. Journal of Biotechnology, 84, 285–289.

    Article  Google Scholar 

  87. White, L. J., Hardy, M. E., & Estes, M. K. (1997). Biochemical characterization of a smaller form of recombinant Norwalk virus capsids assembled in insect cells. Journal of Virology, 71, 8066–8072.

    CAS  Google Scholar 

  88. Branco, L. M., Grove, J. N., Geske, F. J., Boisen, M. L., Muncy, I. J., Magliato, S. A., et al. (2010). Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virology Journal, 7, 279.

    Article  CAS  Google Scholar 

  89. Porterfield, J. Z., & Zlotnick, A. (2010). A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance. Virology, 407, 281–288.

    Article  CAS  Google Scholar 

  90. Goodridge, L., Goodridge, C., Wu, J., Griffiths, M., & Pawliszyn, J. (2004). Isoelectric point determination of norovirus virus-like particles by capillary isoelectric focusing with whole column imaging detection. Analytical Chemistry, 76, 48–52.

    Article  CAS  Google Scholar 

  91. Hewat, E. A., Booth, T. F., Loudon, P. T., & Roy, P. (1992). Three-dimensional reconstruction of baculovirus expressed bluetongue virus core-like particles by cryo-electron microscopy. Virology, 189, 10–20.

    Article  CAS  Google Scholar 

  92. Fuller, S. D., Wilk, T., Gowen, B. E., Kräusslich, H. G., & Vogt, V. M. (1997). Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Current Biology, 7, 729–738.

    Article  CAS  Google Scholar 

  93. Yu, X., Qiao, M., Atanasov, I., Hu, Z., Kato, T., Liang, T. J., et al. (2007). Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology, 367, 126–134.

    Article  CAS  Google Scholar 

  94. Voss, J. E., Vaney, M. C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., et al. (2010). Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 468, 709–712.

    Article  CAS  Google Scholar 

  95. Kumar, S., Ochoa, W., Singh, P., Hsu, C., Schneemann, A., Manchester, M., et al. (2009). Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design. Virology, 388, 185–190.

    Article  CAS  Google Scholar 

  96. Crowther, R. A. (2010). From envelopes to atoms: The remarkable progress of biological electron microscopy. Advances in Protein Chemistry and Structural Biology, 81, 1–32.

    Article  CAS  Google Scholar 

  97. Goldsmith, C. S., & Miller, S. E. (2009). Modern uses of electron microscopy for detection of viruses. Clinical Microbiology Reviews, 22, 552–563.

    Article  Google Scholar 

  98. Persson, M., Tars, K., & Liljas, L. (2008). The capsid of the small RNA phage PRR1 is stabilized by metal ions. Journal of Molecular Biology, 383, 914–922.

    Article  CAS  Google Scholar 

  99. Plevka, P., Kazaks, A., Voronkova, T., Kotelovica, S., Dishlers, A., Liljas, L., et al. (2009). The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly. Journal of Molecular Biology, 391, 635–647.

    Article  CAS  Google Scholar 

  100. Savithri, H. S., & Murthy, M. R. N. (2010). Structure and assembly of Sesbania mosaic virus. Current Science, 98, 346–351.

    CAS  Google Scholar 

  101. Lane, S. W., Dennis, C. A., Lane, C. L., Trinh, C. H., Rizkallah, P. J., Stockley, P. G., et al. (2011). Construction and crystal structure of recombinant STNV capsids. Journal of Molecular Biology, 413, 41–50.

    Article  CAS  Google Scholar 

  102. Ausar, S. F., Foubert, T. R., Hudson, M. H., Vedvick, T. S., & Middaugh, C. R. (2006). Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. Journal of Biological Chemistry, 281, 19478–19488.

    Article  CAS  Google Scholar 

  103. Cuellar, J. L., Meinhoevel, F., Hoehne, M., & Donath, E. (2010). Size and mechanical stability of norovirus capsids depend on pH: A nanoindentation study. Journal of General Virology, 91, 2449–2456.

    Article  CAS  Google Scholar 

  104. Rumnieks, J., Ose, V., Tars, K., Dislers, A., Strods, A., Cielens, I., et al. (2009). Assembly of mixed rod-like and spherical particles from group I and II RNA bacteriophage coat proteins. Virology, 391, 187–194.

    Article  CAS  Google Scholar 

  105. Lang, R., Winter, G., Vogt, L., Zurcher, A., Dorigo, B., & Schimmele, B. (2009). Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Development and Industrial Pharmacy, 35, 83–97.

    Article  CAS  Google Scholar 

  106. Kissmann, J., Joshi, S. B., Haynes, J. R., Dokken, L., Richardson, C., & Middaugh, C. R. (2011). H1N1 influenza virus-like particles: Physical degradation pathways and identification of stabilizers. Journal of Pharmaceutical Sciences, 100, 634–645.

    Article  CAS  Google Scholar 

  107. Bragard, C., Duncan, G. H., Wesley, S. V., Naidu, R. A., & Mayo, M. A. (2000). Virus-like particles assemble in plants and bacteria expressing the coat protein gene of Indian peanut clump virus. Journal of General Virology, 81, 267–272.

    CAS  Google Scholar 

  108. Lokesh, G. L., Gowri, T. D., Satheshkumar, P. S., Murthy, M. R., & Savithri, H. S. (2002). A molecular switch in the capsid protein controls the particle polymorphism in an icosahedral virus. Virology, 292, 211–223.

    Article  CAS  Google Scholar 

  109. Hema, M., Subba Reddy, C. V., Savithri, H. S., & Sreenivasulu, P. (2008). Assembly of recombinant coat protein of sugarcane streak mosaic virus into potyvirus-like particles. Indian Journal of Experimental Biology, 46, 793–796.

    CAS  Google Scholar 

  110. Routh, A., Domitrovic, T., & Johnson, J. E. (2012). Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus. Proceedings of the National Academy of Science of the United States of America, 109, 1907–1912.

    Article  CAS  Google Scholar 

  111. Bunka, D. H., Lane, S. W., Lane, C. L., Dykeman, E. C., Ford, R. J., Barker, A. M., et al. (2011). Degenerate RNA packaging signals in the genome of Satellite Tobacco Necrosis Virus: Implications for the assembly of a T = 1 capsid. Journal of Molecular Biology, 413, 51–65.

    Article  CAS  Google Scholar 

  112. Kaczmarczyk, S. J., Sitaraman, K., Young, H. A., Hughes, S. H., & Chatterjee, D. K. (2011). Protein delivery using engineered virus-like particles. Proceedings of the National Academy of Science of the United States of America, 108, 16998–17003.

    Article  CAS  Google Scholar 

  113. Thomas, C. E., Ehrhardt, A., & Kay, M. A. (2003). Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 4, 346–358.

    Article  CAS  Google Scholar 

  114. Storni, T., Ruedl, C., Schwarz, K., Schwendener, R. A., Renner, W. A., & Bachmann, M. F. (2004). Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. Journal of Immunology, 172, 1777–1785.

    CAS  Google Scholar 

  115. Ng, B. C., Chan, S. T., Lin, J., & Tolbert, S. H. (2011). Using polymer conformation to control architecture in semiconducting polymer/viral capsid assemblies. ACS Nano, 5, 7730–7738.

    Article  CAS  Google Scholar 

  116. Newman, M., Chua, P. K., Tang, F. M., Su, P. Y., & Shih, C. (2009). Testing an electrostatic interaction hypothesis of hepatitis B virus capsid stability by using an in vitro capsid disassembly/reassembly system. Journal of Virology, 83, 10616–10626.

    Article  CAS  Google Scholar 

  117. Fang, C. Y., Lin, P. Y., Ou, W. C., Chen, P. L., Shen, C. H., Chang, D., et al. (2012). Analysis of the size of DNA packaged by the human JC virus-like particle. Journal of Virological Methods, 182, 87–92.

    Article  CAS  Google Scholar 

  118. Kaltgrad, E., O’Reilly, M. K., Liao, L., Han, S., Paulson, J. C., & Finn, M. G. (2008). On-virus construction of polyvalent glycan ligands for cell-surface receptors. Journal of the American Chemical Society, 130, 4578–4579.

    Article  CAS  Google Scholar 

  119. Strable, E., & Finn, M. G. (2009). Chemical modification of viruses and virus-like particles. Current Topics in Microbiology and Immunology, 327, 1–21.

    Article  CAS  Google Scholar 

  120. Spohn, G., Guler, R., Johansen, P., Keller, I., Jacobs, M., Beck, M., et al. (2007). A virus-like particle-based vaccine selectively targeting soluble TNF-alpha protects from arthritis without inducing reactivation of latent tuberculosis. Journal of Immunology, 178, 7450–7457.

    CAS  Google Scholar 

  121. Bachmann, M. F., & Jennings, G. T. (2011). Therapeutic vaccines for chronic diseases: Successes and technical challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2815–2822.

    Article  CAS  Google Scholar 

  122. Spohn, G., Jennings, G. T., Martina, B. E., Keller, I., Beck, M., Pumpens, P., et al. (2010). A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virology Journal, 7, 146.

    Article  CAS  Google Scholar 

  123. Pastori, C., Tudor, D., Diomede, L., Drillet, A. S., Jegerlehner, A., Röhn, T. A., et al. (2012). Virus like particle based strategy to elicit HIV-protective antibodies to the alpha-helic regions of gp41. Virology, 431, 1–11.

    Article  CAS  Google Scholar 

  124. Smith, M. L., Lindbo, J. A., Dillard-Telm, S., Brosio, P. M., Lasnik, A. B., McCormick, A. A., et al. (2006). Modified Tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology, 348, 475–488.

    Article  CAS  Google Scholar 

  125. Natilla, A., & Hammond, R. W. (2011). Maize rayado fino virus virus-like particles expressed in tobacco plants: A new platform for cysteine selective bioconjugation peptide display. Journal of Virological Methods, 178, 209–215.

    Article  CAS  Google Scholar 

  126. Minten, I. J., Claessen, V. I., Blank, K., Rowan, A. E., Nolte, R. J. M., & Cornelissen, J. J. (2011). Catalytic capsids: The art of confinement. Chemical Science, 2, 358–362.

    Article  CAS  Google Scholar 

  127. Minten, I. J., Hendriks, L. J., Nolte, R. J., & Cornelissen, J. J. (2009). Controlled encapsulation of multiple proteins in virus capsids. Journal of the American Chemical Society, 131, 17771–17773.

    Article  CAS  Google Scholar 

  128. Ohtake, N., Niikura, K., Suzuki, T., Nagakawa, K., Mikuni, S., Matsuo, Y., et al. (2010). Low pH-triggered model drug molecule release from virus-like particles. ChemBioChem, 11, 959–962.

    Article  CAS  Google Scholar 

  129. Walker, A., Skamel, C., & Nassal, M. (2011). SplitCore: An exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Scientific Reports, 1, 5.

    Article  CAS  Google Scholar 

  130. Werner, S., Marillonnet, S., Hause, G., Klimyuk, V., & Gleba, Y. (2006). Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proceedings of the National Academy of Science of the United States of America, 103, 17678–17683.

    Article  CAS  Google Scholar 

  131. Gleiter, S., & Lilie, H. (2005). Cell-type specific targeting and gene expression using a variant of polyoma VP1 virus-like particles. Biological Chemistry, 384, 247–255.

    Google Scholar 

  132. Park, J. S., Cho, M. K., Lee, E. J., Ahn, K. Y., Lee, K. E., Jung, J. H., et al. (2009). A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nature Nanotechnology, 4, 259–264.

    Article  CAS  Google Scholar 

  133. Cardinale, D., Carette, N., & Michon, T. (2012). Virus scaffolds as enzyme nano-carriers. Trends in Biotechnology, 30, 369–376.

    Article  CAS  Google Scholar 

  134. Mokili, J. L., Rohwer, F., & Dutilh, B. E. (2012). Metagenomics and future perspectives in virus discovery. Current Opinion in Virology, 2, 63–77.

    Article  CAS  Google Scholar 

  135. Janssens, M. E., Geysen, D., Broos, K., De Goeyse, I., Robbens, J., Van Petegem, F., et al. (2010). Folding properties of the hepatitis B core as a carrier protein for vaccination research. Amino Acids, 38, 1617–1626.

    Article  CAS  Google Scholar 

  136. Hulo, C., de Castro, E., Masson, P., Bougueleret, L., Bairoch, A., Xenarios, I., et al. (2011). ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Research, 39, D576–D582.

    Article  Google Scholar 

  137. Tremblay, M. H., Majeau, N., Gagné, M. E., Lecours, K., Morin, H., Duvignaud, J. B., et al. (2006). Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS Journal, 273, 14–25.

    Article  CAS  Google Scholar 

  138. Caballero, S., Guix, S., Ribes, E., Bosch, A., & Pintó, R. M. (2004). Structural requirements of astrovirus virus-like particles assembled in insect cells. Journal of Virology, 78, 13285–13292.

    Article  CAS  Google Scholar 

  139. Farnós, O., Fernández, E., Chiong, M., Parra, F., Joglar, M., Méndez, L., et al. (2009). Biochemical and structural characterization of RHDV capsid protein variants produced in Pichia pastoris: Advantages for immunization strategies and vaccine implementation. Antiviral Research, 81, 25–36.

    Article  CAS  Google Scholar 

  140. Lu, X. Y., Chen, Y., Bai, B. K., Hu, H., Tao, L., Yang, J., et al. (2007). Immune responses against SARS CoV induced by virus-like particles in mice. Immunology, 122, 496–502.

    Article  CAS  Google Scholar 

  141. Ohtaki, N., Takahashi, H., Kaneko, K., Gomi, Y., Ishikawa, T., Higashi, Y., et al. (2010). Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. Vaccine, 28, 6588–6596.

    Article  CAS  Google Scholar 

  142. Li, T. C., Yamakawa, Y., Suzuki, K., Tatsumi, M., Razak, M. A., Uchida, T., et al. (1997). Expression and self-assembly of empty virus-like particles of hepatitis E virus. Journal of Virology, 71, 7207–7213.

    CAS  Google Scholar 

  143. Cielens, I., Ose, V., Petrovskis, I., Strelnikova, A., Renhofa, R., Kozlovska, T., et al. (2000). Mutilation of RNA phage Qbeta virus-like particles: From icosahedrons to rods. FEBS Letters, 482, 261–264.

    Article  CAS  Google Scholar 

  144. Lamb, J. W., Duncan, G. H., Reavy, B., Gildow, F. E., Mayo, M. A., & Hay, R. T. (1996). Assembly of virus-like particles in insect cells infected with a baculovirus containing a modified coat protein gene of potato leafroll luteovirus. Journal of General Virology, 77, 1349–1358.

    Article  CAS  Google Scholar 

  145. Schneemann, A., Dasgupta, R., Johnson, J. E., & Rueckert, R. R. (1993). Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of flock house virus, a nodavirus. Journal of Virology, 67, 2756–2763.

    CAS  Google Scholar 

  146. Luo, L., Li, Y., & Kang, C. Y. (1990). Expression of gag precursor protein and secretion of virus-like gag particles of HIV-2 from recombinant baculovirus-infected insect cells. Virology, 179, 874–880.

    Article  CAS  Google Scholar 

  147. Shanks, M., & Lomonossoff, G. P. (2000). Co-expression of the capsid proteins of Cowpea mosaic virus in insect cells leads to the formation of virus-like particles. Journal of General Virology, 81, 3093–3097.

    CAS  Google Scholar 

  148. Pringle, F. M., Kalmakoff, J., & Ward, V. K. (2001). Analysis of the capsid processing strategy of Thosea asigna virus using baculovirus expression of virus-like particles. Journal of General Virology, 82, 259–266.

    CAS  Google Scholar 

  149. Sastri, M., Kekuuda, R., Gopinath, K., Ranjith Kumar, C. T., Jagath, J. R., & Savithri, H. S. (1997). Assembly of physalis mottle virus capsid protein in Escherichia coli and the role of amino and carboxy termini in the formation of the icosahedral particles. Journal of Molecular Biology, 272, 541–552.

    Article  CAS  Google Scholar 

  150. Li, C., Liu, F., Liang, M., Zhang, Q., Wang, X., Wang, T., et al. (2010). Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice. Vaccine, 28, 4294–4300.

    Article  CAS  Google Scholar 

  151. Warfield, K. L., Bosio, C. M., Welcher, B. C., Deal, E. M., Mohamadzadeh, M., Schmaljohn, A., et al. (2003). Ebola virus-like particles protect from lethal Ebola virus infection. Proceedings of the National Academy of Science of the United States of America, 100, 15889–15894.

    Article  CAS  Google Scholar 

  152. Walpita, P., Barr, J., Sherman, M., Basler, C. F., & Wang, L. (2011). Vaccine potential of Nipah virus-like particles. PLoS ONE, 6(4), e18437.

    Article  CAS  Google Scholar 

  153. Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P., & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. Journal of General Virology, 79, 1047–1054.

    Google Scholar 

  154. Fender, P., Ruigrok, R. W., Gout, E., Buffet, S., & Chroboczek, J. (1997). Adenovirus dodecahedron, a new vector for human gene transfer. Nature Biotechnology, 15, 52–56.

    Article  CAS  Google Scholar 

  155. Yin, S., Sun, S., Yang, S., Shang, Y., Cai, X., & Liu, X. (2010). Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli. Virology Journal, 7, 166.

    Article  CAS  Google Scholar 

  156. Newcomb, W. W., Homa, F. L., Thomsen, D. R., Trus, B. L., Cheng, N., Steven, A., et al. (1999). Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. Journal of Virology, 73, 4239–4250.

    CAS  Google Scholar 

  157. Saliki, J. T., Mizak, B., Flore, H. P., Gettig, R. R., Burand, J. P., Carmichael, L. E., et al. (1992). Canine parvovirus empty capsids produced by expression in a baculovirus vector: Use in analysis of viral properties and immunization of dogs. Journal of General Virology, 73, 369–374.

    Article  CAS  Google Scholar 

  158. Sasnauskas, K., Bulavaite, A., Hale, A., Jin, L., Knowles, W. A., Gedvilaite, A., et al. (2002). Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology, 45, 308–317.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Prof. Dr. P. Pumpens for support during the preparation and critical reading the manuscript, Dr. K. Tars, and Dr. A. Kazaks for helpful discussions. I apologize to the authors for the important work not cited in this review. The writing of the review was supported by the ERAF grant 2010/0314/2DP/2.1.1.1.0/10/APIA/VIAA/052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andris Zeltins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeltins, A. Construction and Characterization of Virus-Like Particles: A Review. Mol Biotechnol 53, 92–107 (2013). https://doi.org/10.1007/s12033-012-9598-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9598-4

Keywords