Skip to main content

Advertisement

Log in

The inhibition of Panc1 cancer cells invasion by hAMSCs secretome through suppression of tyrosine phosphorylation of SGK223 (at Y411 site), c-Src (at Y416, Y530 sites), AKT activity, and JAK1/Stat3 signaling

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

SGK223 is a scaffolding protein involving in the oncogenic tyrosine kinase signaling. SGK223 was phosphorylated at Y411 by c-Src and in response to the Epidermal growth factor receptor (EGFR). Tyrosine phosphorylated SGK223 at Y411 enables to interact with CSK resulting up regulation of c-Src activity and promotion of the cell migration. Human amniotic mesenchymal stromal cells (hAMSCs) are a population of multipotent cells that it was considered to be as a potential platform in cancer therapy. Herein, we employed a co-culture system to clarify the effects of hAMSCs secretome through tyrosine phosphorylation of c-Src, SGK223, AKT activity, and JAK1/Stat3 signaling in Panc1 pancreatic cancer cells. By using the 0.4 μm pore sized transwell membranes, both cell lines were firstly co-cultured for 72 h. Next, c-Src activity (tyrosine phosphorylation levels at Y530 and Y416), tyrosine phosphorylation level of SGK223 (at Y411), AKT activity, and JAK1/Stat3 signaling in Panc1 cells after treatment with hAMSCs were evaluated. Our results showed that hAMSCs have the inhibitory effects on Panc1 pancreatic cancer cells invasion and it suggests that the suppression of c-Src activity, SGK223 expression, AKT activity, and JAK1/Stat3 signaling may be as critical targets in pancreatic cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used or analyzed in the present study are available from the corresponding author upon reasonable request.

References

  1. Safari F, Murata-Kamiya N, Saito Y, Hatakeyama M. Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors. Proc Natl Acad Sci USA. 2011;108:14938–43.

    Article  Google Scholar 

  2. Tactacan CM, Phua YW, Liu L, Zhang L, Humphrey ES, Cowley M, Pinese M, Biankin AV, Daly RJ. The pseudokinase SgK223 promotes invasion of pancreatic ductal epithelial cells through JAK1/Stat3 signaling. Mol Cancer. 2015;14:139.

    Article  CAS  Google Scholar 

  3. Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Luhrs H, Friess H, Buchler MW, Adler G. Overexpression and activation of the tyrosine kinase src in human pancreatic carcinoma. Biochem Biophys Res Commun. 1998;243(2):503–8.

    Article  CAS  Google Scholar 

  4. Morton JP, Karim SA, Graham K, Timpson P, Jamieson N, Athineos D, Doyle B, McKay C, Heung MY, Oien KA, Frame MC, Evans TR, Sansom OJ, Brunton VG. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology. 2010;139(1):292–303.

    Article  CAS  Google Scholar 

  5. Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609.

    Article  CAS  Google Scholar 

  6. Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.

    Article  CAS  Google Scholar 

  7. Till JE, McCulloch CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.

    Article  CAS  Google Scholar 

  8. Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. AdvDrug Deliv Rev. 2015;82–83:1–11.

    Google Scholar 

  9. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, Halvorsen YD, Cheatham B, Storms RW, Gimble JM. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and proinflammatory factors. J Cell Physiol. 2007;212(3):702–9.

    Article  CAS  Google Scholar 

  10. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.

    Article  CAS  Google Scholar 

  11. Sarojini H, Estrada R, Lu H, Dekova S, Lee MJ, Gray RD, Wang E. PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem. 2008;104(5):1793–802.

    Article  CAS  Google Scholar 

  12. Schinkothe T, Bloch W, Schmidt A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 2008;17:199–206.

    Article  CAS  Google Scholar 

  13. Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 2005;32:270–9.

    Article  CAS  Google Scholar 

  14. Puglisi MA, Tesori V, Lattanzi W, Piscaglia AC, Gasbarrini GB, D’Ugo DM, Gasbarrini A. Therapeutic implications of mesenchymal stem cells in liver injury. J Biomed Biotechnol. 2011;2011:860578.

    Article  CAS  Google Scholar 

  15. Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, Berthiaume F, Yarmush ML. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun. 2007;363(2):247–52.

    Article  CAS  Google Scholar 

  16. Wang P, Aguirre A. New strategies and in vivo monitoring methods for stem cell-based anticancer therapies. Stem Cells Int. 2018;2018:7315218.

    PubMed  PubMed Central  Google Scholar 

  17. Bromberg J, Darnell JE Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19:2468–73.

    Article  CAS  Google Scholar 

  18. Miklossy G, Hilliard TS, Turkson J. Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov. 2013;12:611–29.

    Article  CAS  Google Scholar 

  19. Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G, Bishayee A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845:136–54.

    PubMed  CAS  Google Scholar 

  20. Johnston PA. Grandis J.R. STAT3 signaling: anticancer strategies and challenges. Mol Interv. 2011;11:18–26.

    Article  CAS  Google Scholar 

  21. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.

    Article  CAS  Google Scholar 

  22. Rahmani Z, Safari F. Evaluating the in vitro therapeutic effects of human amniotic mesenchymal stromal cells on MiaPaca2 pancreatic cancer cells using 2D and 3D cell culture model. Tissue Cell. 2020;23(68):101479.

    Google Scholar 

  23. Safari F, Shakery T, Sayadamin N. Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models. Cell Biochem Funct. 2021;39(6):813–20.

    Article  CAS  Google Scholar 

  24. Yokoi K, Hawke D, Oborn CJ, Jang JY, Nishioka Y, Fan D, Kim SW, Kim SJ. Identification and validation of SRC and phospho-SRC family proteins in circulating mononuclear cells as novel biomarkers for pancreatic cancer. Transl Oncol. 2011;4(2):83–91.

    Article  Google Scholar 

  25. Hakam A, Fang Q, Karl R, Coppola D. Coexpression of IGF-1R and c-Src proteins in human pancreatic ductal adenocarcinoma. Dig Dis Sci. 2003;48:1972–8.

    Article  CAS  Google Scholar 

  26. Roskoski R Jr. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 2005;331:1–14.

    Article  CAS  Google Scholar 

  27. Bjorge JD, Jakymiw A, Fujita DJ. Selected glimpses into the activation and function of Src kinase. Oncogene. 2000;19:5620–35.

    Article  CAS  Google Scholar 

  28. Irwin ME, Bohin N, Boerner JL. Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biol Ther. 2011;12(8):718–26.

    Article  CAS  Google Scholar 

  29. Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, Beger HG. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Investig. 1992;90:1352–60.

    Article  CAS  Google Scholar 

  30. Roviello G, Zanotti L, Cappelletti MR, Gobbi A, Dester M, Paganini G, Pacifico C, Generali D, Roudi R. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR-mutated non-small cell lung cancer? Clin Exp Med. 2018;18(1):15–20.

    Article  CAS  Google Scholar 

  31. Kim SM, Kwon OJ, Hong YK, Kim JH, Solca F, Ha SJ, Soo RA, Christensen JG, Lee JH, Cho BC. Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol Cancer Ther. 2012;11(10):2254–64.

    Article  CAS  Google Scholar 

  32. Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene. 2013;32:4343–54.

    Article  CAS  Google Scholar 

  33. Pinilla S, Alt E, Abdul Khalek FJ, Jotzu C, Muehlberg F, Beckmann C, Song YH. Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett. 2009;284(1):80–5.

    Article  CAS  Google Scholar 

  34. Chanda D, Isayeva T, Kumar S, Hensel JA, Sawant A, Ramaswamy G, Siegel GP, Beatty MS, Ponnazhagan S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in prostate cancer bone metastasis. Clin Cancer Res. 2009;15:7175–85.

    Article  CAS  Google Scholar 

  35. Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113:4197–205.

    Article  CAS  Google Scholar 

  36. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

F.S. designed the research, performed the experiments, and wrote the paper. F.S., N.S.N., and A.A.N. analyzed data.

Corresponding author

Correspondence to Fatemeh Safari.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, F., Shafiee Nejad, N. & Aghaei Nejad, A. The inhibition of Panc1 cancer cells invasion by hAMSCs secretome through suppression of tyrosine phosphorylation of SGK223 (at Y411 site), c-Src (at Y416, Y530 sites), AKT activity, and JAK1/Stat3 signaling. Med Oncol 39, 28 (2022). https://doi.org/10.1007/s12032-022-01649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01649-4

Keywords

Navigation