Skip to main content

Advertisement

Log in

Automatic Robust Neurite Detection and Morphological Analysis of Neuronal Cell Cultures in High-content Screening

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Cell-based high content screening (HCS) is becoming an important and increasingly favored approach in therapeutic drug discovery and functional genomics. In HCS, changes in cellular morphology and biomarker distributions provide an information-rich profile of cellular responses to experimental treatments such as small molecules or gene knockdown probes. One obstacle that currently exists with such cell-based assays is the availability of image processing algorithms that are capable of reliably and automatically analyzing large HCS image sets. HCS images of primary neuronal cell cultures are particularly challenging to analyze due to complex cellular morphology. Here we present a robust method for quantifying and statistically analyzing the morphology of neuronal cells in HCS images. The major advantages of our method over existing software lie in its capability to correct non-uniform illumination using the contrast-limited adaptive histogram equalization method; segment neuromeres using Gabor-wavelet texture analysis; and detect faint neurites by a novel phase-based neurite extraction algorithm that is invariant to changes in illumination and contrast and can accurately localize neurites. Our method was successfully applied to analyze a large HCS image set generated in a morphology screen for polyglutamine-mediated neuronal toxicity using primary neuronal cell cultures derived from embryos of a Drosophila Huntington’s Disease (HD) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Kofahi, K., Lasek, S., Szarowski, D., Pace, C., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.

    Article  PubMed  Google Scholar 

  • Al-Kofahi, K. A., Can, A., Lasek, S., Szarowski, D. H., Dowell-Mesfin, N., Shain, W., et al. (2003). Median-based robust algorithms for tracing neurons from noisy confocal microscope images. IEEE Transactions on Information Technology in Biomedicine, 7(4), 302–317.

    Article  PubMed  Google Scholar 

  • Bazen, A. M., & Gerez, S. H. (2002). Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 905–919.

    Article  Google Scholar 

  • Boland, M. V., & Murphy, R. F. (1999). Automated analysis of patterns in fluorescence-microscope images. Trends in Cell Biology, 9(5), 201–202.

    Article  CAS  PubMed  Google Scholar 

  • Boland, M. V., & Murphy, R. F. (2001). A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17(12), 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • Boland, M. V., Markey, M. K., & Murphy, R. F. (1998). Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 33(3), 366–375.

    Article  CAS  PubMed  Google Scholar 

  • Broser, P. J., Erdogan, S., Grinevich, V., Osten, P., Sakmann, B., & Wallace, D. J. (2008). Automated axon length quantification for populations of labelled neurons. Journal of Neurosci Methods, 169(1), 43–54.

    Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.

    Article  Google Scholar 

  • Carpenter, A. E. (2007). Image-based chemical screening. Nature Chemical Biology, 3(8), 461–465.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., & Murphy, R. F. (2006). Automated interpretation of protein subcellular location patterns. International Review of Cytology, 249, 193–227.

    Article  CAS  PubMed  Google Scholar 

  • Costa Lda, F., Manoel, E. T., Faucereau, F., Chelly, J., van Pelt, J., & Ramakers, G. (2002). A shape analysis framework for neuromorphometry. Network, 13(3), 283–310.

    Article  PubMed  Google Scholar 

  • Daugman, J. G. (1985). Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, 2, 1160–1169.

    Article  CAS  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38.

    Google Scholar 

  • Dragunow, M. (2008). High-content analysis in neuroscience. Nature Reviews. Neuroscience, 9(10), 779–788.

    Article  CAS  PubMed  Google Scholar 

  • Duda, R., Hart, P., & Stork, D. (2000). Pattern classification (2nd ed.). New York: Wiley.

    Google Scholar 

  • Eggert, U. S., & Mitchison, T. J. (2006). Small molecule screening by imaging. Current Opinion in Chemical Biology, 10(3), 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Eggert, U. S., Kiger, A. A., Richter, C., Perlman, Z. E., Perrimon, N., Mitchison, T. J., et al. (2004). Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biology, 2(12), e379.

    Article  PubMed  Google Scholar 

  • Ellis, D. (2003). “Dynamic Time Warp (DTW) in Matlab.” from http://www.ee.columbia.edu/∼dpwe/resources/matlab/dtw/.

  • Fan, J., Zhou, X., Dy, J. G., Zhang, Y., & Wong, S. T. (2009). An automated pipeline for dendrite spine detection and tracking of 3D optical microscopy neuron images of in vivo mouse models. Neuroinformatics, 7(2), 113–130.

    Article  PubMed  Google Scholar 

  • Fredieu, J. R., & Mahowald, A. P. (1989). Glial interactions with neurons during Drosophila embryogenesis. Development, 106(4), 739–748.

    CAS  PubMed  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. Prentice Hall.

  • González, R. C., & Woods, R. E. (2007). Digital image processing. Prentice Hall.

  • Grigorescu, S. E., Petkov, N., & Kruizinga, P. (2002). Comparison of texture features based on Gabor filters. IEEE Transactions on Image Processing, 11(10), 1160–1167.

    Article  PubMed  Google Scholar 

  • Hedges, L., & Olkin, I. (1985). Stat. Method meta-analysis. San Diego: Academic.

    Google Scholar 

  • Hong, L., Wan, Y., & Jain, A. (1998). Fingerprint image enhancement: algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 777–789.

    Article  Google Scholar 

  • Kass, M., & Witkin, A. (1987). Analyzing oriented patterns. Computer Vision, Graphics, and Image Processing, 37(3), 362–385.

    Article  Google Scholar 

  • Kimura, Y., Lee, W. C., & Littleton, J. T. (2007). Therapeutic prospects for the prevention of neurodegeneration in Huntington's Disease and the polyglutamine repeat disorders. Mini Reviews in Medicinal Chemistry, 7, 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Kovesi, P. (1997). Symmetry and asymmetry from local phase. Tenth Australian Joint Conference on Artificial Intelligence, pp. 185–190.

  • Kovesi, P. (1999). Image features from phase congruency. Videre: A Journal of Computer Vision Research, 1(3).

  • Leandro, J. J., Cesar, R. M., Jr., & Costa Lda, F. (2009). Automatic contour extraction from 2D neuron images. Journal of Neurosci Methods, 177(2), 497–509.

    Article  CAS  Google Scholar 

  • Liebel, U., Starkuviene, V., Erfle, H., Simpson, J. C., Poustka, A., Wiemann, S., et al. (2003). A microscope-based screening platform for large-scale functional protein analysis in intact cells. FEBS Letters, 554(3), 394–398.

    Article  CAS  PubMed  Google Scholar 

  • Meijering, E., Jacob, M., Sarria, J. C., Steiner, P., Hirling, H., & Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A, 58(2), 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Mitchison, T. J. (2005). Small-molecule screening and profiling by using automated microscopy. Chembiochem, 6(1), 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Muller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M. P., & Boutros, M. (2005). Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature, 436(7052), 871–875.

    Article  PubMed  Google Scholar 

  • Murphy, R. F., Boland, M. V., & Velliste, M. (2000). Towards a systematics for protein subcelluar location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images. Proceedings International Conference on Intelligent Systems for Molecular Biology, 8, 251–259.

    CAS  Google Scholar 

  • Narro, M. L., Yang, F., Kraft, R., Wenk, C., Efrat, A., & Restifo, L. L. (2007). NeuronMetrics: software for semi-automated processing of cultured neuron images. Brain Research, 1138, 57–75.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R., et al. (2006). High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods, 3(5), 385–390.

    Article  CAS  PubMed  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., et al. (2005). Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature, 436(7047), 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Peng, H. (2008). Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17), 1827–1836.

    Article  CAS  PubMed  Google Scholar 

  • Perlman, Z. E., Slack, M. D., Feng, Y., Mitchison, T. J., Wu, L. F., & Altschuler, S. J. (2004). Multidimensional drug profiling by automated microscopy. Science, 306(5699), 1194–1198.

    Article  CAS  PubMed  Google Scholar 

  • Pool, M., Thiemann, J., Bar-Or, A., & Fournier, A. E. (2008). NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. Journal of Neuroscience Methods, 168(1), 134–139.

    Article  PubMed  Google Scholar 

  • Rocchi, M. B., Sisti, D., Albertini, M. C., & Teodori, L. (2007). Current trends in shape and texture analysis in neurology: aspects of the morphological substrate of volume and wiring transmission. Brain Research Reviews, 55(1), 97–107.

    Article  PubMed  Google Scholar 

  • Schoemans, R., Aigrot, M. S., Wu, C., Marée, R., Hong, P., Belachew, S., et al.. (in press). Oligodendrocyte development and myelinogenesis are not impaired by high concentrations of phenylalanine or its metabolites. Journal of Inherited Metabolism Disease.

  • Seecof, R. L., Donady, J. J., & Teplitz, R. L. (1973). Differentiation of Drosophila neuroblasts to form ganglion-like clusters of neurons in vitro. Cell Differentiation, 2(3), 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Sepp, K. J., Hong, P., Lizarraga, S. B., Liu, J. S., Mejia, L. A., Walsh, C. A., et al. (2008). Identification of neural outgrowth genes using genome-wide RNAi. PLoS Genetics, 4(7), e1000111.

    Article  PubMed  Google Scholar 

  • Sonnichsen, B., Koski, L. B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., et al. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature, 434(7032), 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Steger, C. (1998). An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(2), 113–125.

    Article  Google Scholar 

  • Sun, C., & Vallotton, P. (2009). Fast linear feature detection using multiple directional non-maximum suppression. Journal of Microscopy, 234(2), 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Vallotton, P., Lagerstrom, R., Sun, C., Buckley, M., Wang, D., De Silva, M., et al. (2007). Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision. Cytometry A, 71(10), 889–895.

    PubMed  Google Scholar 

  • Wheeler, D. B., Carpenter, A. E., & Sabatini, D. M. (2005). Cell microarrays and RNA interference chip away at gene function. Nature Genetics, 37(Suppl), S25–S30.

    Article  CAS  PubMed  Google Scholar 

  • Wollman, R., & Stuurman, N. (2007). High throughput microscopy: from raw images to discoveries. Journal of Cell Science, 120(Pt 21), 3715–3722.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, G., Zhou, X., Degterev, A., Ji, L., & Wong, S. T. (2006). Automated neurite labeling and analysis in fluorescence microscopy images. Cytometry A, 69(6), 494–505.

    PubMed  Google Scholar 

  • Zhang, Y., Zhou, X., Degterev, A., Lipinski, M., Adjeroh, D., Yuan, J., et al. (2007). Automated neurite extraction using dynamic programming for high-throughput screening of neuron-based assays. Neuroimage, 35(4), 1502–1515.

    Article  PubMed  Google Scholar 

  • Zuiderveld, K. (Ed.). (1994). Contrast limited adaptive histogram equalization. Graphics gems IV. Princeton: Academic.

    Google Scholar 

Download references

Acknowledgement

CW and PH are supported by an NIH to PH. JS and JTL are supported by an NIH grant to JTL. We appreciate the kind help of Dr. Xiaobo Zhou and Dr. Shi Peng at the Weill Medical College of Cornell University in using their NeuriteIQ software to generate the neurite tracing results shown in Fig. 11c and d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Schulte, J., Sepp, K.J. et al. Automatic Robust Neurite Detection and Morphological Analysis of Neuronal Cell Cultures in High-content Screening. Neuroinform 8, 83–100 (2010). https://doi.org/10.1007/s12021-010-9067-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-010-9067-9

Keywords

Navigation