, Volume 64, Issue 2, pp 254–264 | Cite as

Microbiome and its relation to gestational diabetes

  • Ramon V. Cortez
  • Carla R. Taddei
  • Luiz G. Sparvoli
  • Ana G. S. Ângelo
  • Marina Padilha
  • Rosiane Mattar
  • Silvia DaherEmail author
Original Article



Gestational diabetes mellitus (GDM), the major endocrine pathology in pregnancy, has been associated with the development of an intense inflammatory process and increased insulin resistance. The maternal microbiota is involved in several metabolic functions; however, its role in GDM physiopathology remains unclear. The aim of this study was to assess the composition of the microbiota at different sites and evaluate its relationship with the occurrence of GDM.


This cross-sectional study recruited women in the third trimester of gestation with and without GDM. Oral, vaginal, and stool samples were evaluated using next-generation sequencing. We included 68 participants: 26 with and 42 without GDM.


The analysis of the oral microbiome did not show significant differences in phyla and genus among the studied groups. In contrast, GDM patients presented a specific vaginal and intestinal microbiome composition, which was less diverse than those found in the control group, showing genera related to dysbiosis.


Our findings suggest that changes in the composition of the vaginal and intestinal microbiome might be involved in the development of GDM. The follow-up of these patients in order to evaluate vaginal and intestinal samples after delivery may contribute to understanding the development of metabolic disease in women with previous GDM.


Intestinal microbiome Vaginal microbiome Oral microbiome Pregnancy Gestational diabetes 



This work was supported by the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” ‘[grant numbers 444174/2014–1,303306/2016-5]’ and by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)” - [“Finance Code 001]”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2018_1813_MOESM1_ESM.docx (24 kb)
Supplementary Table


  1. 1.
    World Health Organization, Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy (World Health Organization, Geneva, 2013)Google Scholar
  2. 2.
    O. Verier-Mine, Outcomes in women with a history of gestational diabetes. Screening and prevention of type 2 diabetes. Lit. Rev. Diabetes Metab. 36, 595–616 (2010)CrossRefGoogle Scholar
  3. 3.
    G. Di Cianni, R. Miccoli, L. Volpe, C. Lencioni, S. Del Prato, Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab. Res. Rev. 19, 259–270 (2003)CrossRefGoogle Scholar
  4. 4.
    D. Zhang, Y. Huang, D. Ye, Intestinal dysbiosis: an emerging cause of pregnancy complications? Med. Hypotheses 84, 233–236 (2015)Google Scholar
  5. 5.
    P.D. Cani, L. Geurts, S. Matamoros, H. Plovier, T. Duparc, Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes Metab. 40, 246–257 (2014)CrossRefGoogle Scholar
  6. 6.
    W.G. Wade, The oral microbiome in health and disease. Pharmacol. Res. 69, 137–143 (2013)CrossRefGoogle Scholar
  7. 7.
    N. Makiura, M. Ojima, Y. Kou, N. Furuta, N. Okahashi, S. Shizukuishi, A. Amano, Relationship of Porphyromonas gingivalis with glycemic level in patients with type 2 diabetes following periodontal treatment. Oral. Microbiol. Immunol. 23, 348–351 (2008)CrossRefGoogle Scholar
  8. 8.
    K. Aagaard, K. Riehle, J. Ma, N. Segata, T.A. Mistretta, C. Coarfa, S. Raza, S. Rosenbaum, I. Van den Veyver, A. Milosavljevic, D. Gevers, C. Huttenhower, J. Petrosino, J. Versalovic, Metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 7, e36466 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Romero, S.S. Hassan, P. Gajer, A.L. Tarca, D.W. Fadrosh, L. Nikita, M. Galuppi, R.F. Lamont, P. Chaemsaithong, J. Miranda, T. Chaiworapongsa, J. Ravel, The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2, 4 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Hyvärinen, A. Salminen, V. Salomaa, P.J. Pussinen, Systemic exposure to a common periodontal pathogen and missing teeth are associated with metabolic syndrome. Acta Diabetol. 52, 179–182 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Kilian, I.L.C. Chapple, M. Hannig, P.D. Marsh, V. Meuric, A.M.L. Pedersen, M.S. Tonetti, W.G. Wade, E. Zaura, The oral microbiome—an update for oral healthcare professionals. Br. Dent. J. 221, 657–666 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Nasioudis, L.J. Forney, G.M. Schneider, K. Gliniewicz, M. France, A. Boester, M. Sawai, J. Scholl, S.S. Witkin, Influence of pregnancy history on the vaginal microbiome of pregnant women in their first trimester. Sci. Rep. 7, 10201 (2017)CrossRefGoogle Scholar
  13. 13.
    C.R. Taddei, R.V. Cortez, R. Mattar, M.R. Torloni, S. Daher, Microbiome in normal and pathological pregnancies: a literature overview. Am. J. Reprod. Immunol. 80, e12993 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Wang, J. Zheng, W. Shi, N. Du, X. Xu, Y. Zhang, P. Ji, F. Zhang, Z. Jia, Y. Wang, Z. Zheng, H. Zhang, F. Zhao, Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67, 1614–1625 (2018)CrossRefGoogle Scholar
  15. 15.
    J.J. Kozich, S.L. Westcott, N.T. Baxter, S.K. Highlander, P.D. Schloss, Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013)CrossRefGoogle Scholar
  16. 16.
    J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010)CrossRefGoogle Scholar
  17. 17.
    R.C. Edgar, B.J. Haas, J.C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F.O. Glockner, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013)CrossRefGoogle Scholar
  19. 19.
    Chao, A. Species richness estimation. ed. by N Balakrishnan, C. B. Read, and B. Vidakovic. In Encyclopedia of Statistical Sciences (Wiley, New York, 2005) pp. 7909–16Google Scholar
  20. 20.
    C.E. Shannon, The mathematical theory of communication. Md. Comput. 14, 306–317 (1963)Google Scholar
  21. 21.
    V.S. Pylro, L.F.W. Roesch, D.K. Morais, I.M. Clark, P.R. Hirsch, M.R. Tótola, Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J. Microbiol. Methods 107, 30–37 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Lozupone, R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005)CrossRefGoogle Scholar
  23. 23.
    J.A. Navas-Molina, J.M. Peralta-Sánchez, A. González, P.J. McMurdie, Y. Vázquez-Baeza, Z. Xu, L.K. Ursell, C. Lauber, H. Zhou, S.J. Song, J. Huntley, G.L. Ackermann, D. Berg-Lyons, S. Holmes, J.G. Caporaso, R. Knight, Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 531, 371–444 (2013)CrossRefGoogle Scholar
  24. 24.
    A.J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. Mcglinn, P.R. Minchin, R.B.O. Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, Vegan: community ecology package. R. Package Version 2, 2–0 (2014. Google Scholar
  25. 25.
    O. Koren, J.K. Goodrich, T.C. Cullender, A. Spor, K. Laitinen, H.K. Bäckhed, A. Gonzalez, J.J. Werner, L.T. Angenent, R. Knight, F. Bäckhed, E. Isolauri, S. Salminen, R.E. Ley, Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012)CrossRefGoogle Scholar
  26. 26.
    D.B. DiGiulio, B.J. Callahan, P.J. McMurdie, E.K. Costello, D.J. Lyell, A. Robaczewska, C.L. Sun, D.S.A. Goltsman, R.J. Wong, G. Shaw, D.K. Stevenson, S.P. Holmes, D.A. Relman, Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112, 11060–11065 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Fugmann, M. Breier, M. Rottenkolber, F. Banning, U. Ferrari, V. Sacco, H. Grallert, K.G. Parhofer, J. Seissler, T. Clavel, A. Lechner, The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci. Rep. 5, 13212 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Jost, C. Lacroix, C. Braegger, C. Chassard, Stability of the maternal gut microbiota during late pregnancy and early lactation. Curr. Microbiol. 68, 419–427 (2014)CrossRefGoogle Scholar
  29. 29.
    S.M. Nelson, P. Matthews, L. Poston, Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum. Reprod. Update 16, 255–275 (2010)CrossRefGoogle Scholar
  30. 30.
    R.E. Ley, F. Backhed, P. Turnbaugh, C.A. Lozupone, R.D. Knight, J.I. Gordon, Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005)CrossRefGoogle Scholar
  31. 31.
    M.K.W. Crusell, T.H. Hansen, T. Nielsen, K.H. Allin, M.C. Rühlemann, P. Damm, H. Vestergaard, C. Rørbye, N.R. Jørgensen, O.B. Christiansen, F.A. Heinsen, A. Franke, T. Hansen, J. Lauenborg, O. Pedersen, Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 6, 89 (2018)CrossRefGoogle Scholar
  32. 32.
    M.C. Collado, E. Isolauri, K. Laitinen, S. Salminen, Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 88, 894–899 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Santacruz, M.C. Collado, L. García-Valdés, M.T. Segura, J.A. Martín-Lagos, T. Anjos, M. Martí-Romero, R.M. Lopez, J. Florido, C. Campoy, Y. Sanz, Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010)CrossRefGoogle Scholar
  34. 34.
    P.D. Cani, W.M. de Vos, Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017)CrossRefGoogle Scholar
  35. 35.
    P.D. Cani, Metabolism in 2013: the gut microbiota manages host metabolism. Nat. Rev. Endocrinol. 10, 74–76 (2014)CrossRefGoogle Scholar
  36. 36.
    O.B. Christiansen, Reproductive immunology. Mol. Immunol. 55, 8–15 (2013)CrossRefGoogle Scholar
  37. 37.
    M.C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E.O. Verger, B.D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M.E. Dumas, S.W. Rizkalla, J. Doré, P.D. Cani, K. Clément, S. Le Mouhaër, A. Cotillard, S.P. Kennedy, N. Pons, E. Le Chatelier, M. Almeida, B. Quinquis, N. Galleron, J.M. Batto, P. Renault, J.D. Zucker, S.D. Ehrlich, H. Blottière, M. Leclerc, C. Juste, T. De Wouters, P. Lepage, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016)CrossRefGoogle Scholar
  38. 38.
    Y.S. Kuang, J.H. Lu, S.H. Li, J.H. Li, M.Y. Yuan, J.R. He, N.N. Chen, W.Q. Xiao, S.Y. Shen, L. Qiu, Y.F. Wu, C.Y. Hu, Y.Y. Wu, W.D. Li, Q.Z. Chen, H.W. Deng, C.J. Papasian, H.M. Xia, X. Qiu, Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience 6, 1–12 (2017)CrossRefGoogle Scholar
  39. 39.
    V. Lecomte, N.O. Kaakoush, C.A. Maloney, M. Raipuria, K.D. Huinao, H.M. Mitchell, M.J. Morris, Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS ONE 10, e0126931 (2015)CrossRefGoogle Scholar
  40. 40.
    H.M. Tun, S.L. Bridgman, R. Chari, C.J. Field, D.S. Guttman, A.B. Becker, P.J. Mandhane, S.E. Turvey, P. Subbarao, M.R. Sears, J.A. Scott, A.L. Kozyrskyj, Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172, 368–377 (2018)CrossRefGoogle Scholar
  41. 41.
    J.A. Aas, B.J. Paster, L.N. Stokes, I. Olsen, F.E. Dewhirst, Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005)CrossRefGoogle Scholar
  42. 42.
    Y.W. Han, X. Wang, Mobile microbiome. J. Dent. Res. 92, 485–491 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Acuna, O. Cohavy, I. Solt, J. Reeder, M. Kim, I. Lebovics, B. Paster, R. Knight, S. Rotmensch, Preliminary observations on the microbial phylogeny of the oral, vaginal, and rectal microbiome in gestational diabetes and healthy pregnancies. Am. J. Obstet. Gynecol. 204, S109–S110 (2011)CrossRefGoogle Scholar
  44. 44.
    R. Rampersaud, T.M. Randis, A.J. Ratner, Microbiota of the upper and lower genital tract. Semin. Fetal Neonatal Med. 17, 51–57 (2012)CrossRefGoogle Scholar
  45. 45.
    A. Cotillard, S.P. Kennedy, L.C. Kong, E. Prifti, N. Pons, E. Le Chatelier, M. Almeida, B. Quinquis, F. Levenez, N. Galleron, S. Gougis, S. Rizkalla, J.M. Batto, P. Renault, J. Doré, J.D. Zucker, K. Clément, S.D. Ehrlich, S.D. Ehrlich, Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Hasan, V. Aho, P. Pereira, L. Paulin, S.B. Koivusalo, P. Auvinen, J.G. Eriksson, Gut microbiome in gestational diabetes: a Cross-sectional study of mothers and offspring 5 years post-partum. Acta Obstet. Gynecol. Scand. 97, 38–46 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ObstetricsUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
  2. 2.Department of Clinical and Toxicological AnalysisUniversidade de São Paulo (USP)São PauloBrazil

Personalised recommendations