, Volume 62, Issue 1, pp 14–25 | Cite as

May the force be with you: why resistance training is essential for subjects with type 2 diabetes mellitus without complications

  • Roberto CodellaEmail author
  • Marta Ialacqua
  • Ileana Terruzzi
  • Livio Luzi


Physical activity, together with diet and pharmacological therapy, represents one of the three cornerstones in type 2 diabetes mellitus treatment and care. The therapeutic appeal of regular physical activity stems from: (i) its non-pharmacological nature; (ii) its beneficial effects on the metabolic risk factors associated with diabetes complications; (iii) its low costs. Evidence accumulated in the last years suggests that aerobic training—endurance training—constitutes a safe modality of intervention, achievable, and effective in diabetes treatment, whenever it is not limited by comorbidities. Aerobic training exerts insulin-mimetic effects and has been shown to lower mortality risk too. Anaerobic, intense physical activity, such as that of strength or power sports disciplines, is not univocally recognized as safe and simple to realize, however, it is important in stimulating energy and glucose metabolism. According to recent evidence, high-intensity training may be prescribed even in the face of cardiovascular diseases, peripheral vascular disease, or osteoarthritis. Some studies have shown resistance training to be more efficient than aerobic exercise in improving glycemic control. This review explores the most up-to-date indications emerging from literature in support of the beneficial effects of strength stimulation and resistance training in patients with type 2 diabetes without complications.


Resistance training Strength Type 2 diabetes Glycemic control 



American College of Sports Medicine


American Diabetes Association


aerobic exercise


phosphorylated adenosine monophosphate-activated protein kinase


adenosine triphosphate


protein kinase B


calmodulin-dependent protein kinase II


body mass index


diabetes self-management education




Exercise and Sport Science Australia


glucagon-like peptide


glucose transporter 4


glycogen synthase kinase 3β


glycosylated hemoglobin


histone deacetylases


maximum heart rate


International Diabetes Federation








myocite enhancer factor 2


mammalian target of rapamycin


nonalcoholic fatty liver disease


phosphatidylinositol 3 kinase


peroxisome proliferator-activated receptor-gamma coactivator 1α


progressive resistance training


one repetition maximum


resistance training


type 1 diabetes


type 2 diabetes


tricarboxylic acid


tumor necrosis factor


therapeutic patient education


World Health Organization



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions

All authors were responsible for drafting the manuscript and revising it critically for valuable intellectual content. All authors approved the version to be published.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    International Diabetes Federation (IDF), World diabetic prevalence (2017).Google Scholar
  2. 2.
    S.R. Colberg, R.J. Sigal, J.E. Yardley, M.C. Riddell, D.W. Dunstan, P.C. Dempsey, E.S. Horton, K. Castorino, D.F. Tate, Physical activity/exercise and diabetes: a position statement of the american diabetes association. Diabetes Care 39, 2065–2079 (2016)CrossRefGoogle Scholar
  3. 3.
    S.E. Kahn, R.L. Prigeon, D.K. Mcculloch, E.J. Boyko, R.N. Bergman, M.W. Schwartz, J.L. Neifing, W.K. Ward, J.C. Beard, J.P. Palmer, D. Porte Jr, Quantification of the relationship between insulin sensitiyity and P-cell function in human subjects evidence for a hyperbolic function with a regulated feedback loop control system such that for any difference in s, a proportionate reciprocal difference. Diabetes 42, 1663–1672 (1993)CrossRefGoogle Scholar
  4. 4.
    R. Mendes, N. Sousa, A. Almeida, P. Subtil, F. Guedes-Marques, V.M. Reis, J.L. Themudo-Barata, Exercise prescription for patients with type 2 diabetes—a synthesis of international recommendations: narrative review: table 1. Br. J. Sports Med. 50, 1379–1381 (2016)CrossRefGoogle Scholar
  5. 5.
    J.A. Dugan, Exercise recommendations for patients with type 2 diabetes. J. Am. Acad. Physician Assist. 29, 13–18 (2016)CrossRefGoogle Scholar
  6. 6.
    M.J. Armstrong, R.J. Sigal, Exercise as medicine: key concepts in discussing physical activity with patients who have type 2 diabetes. Can. J. Diabetes 39, S129–S133 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Mavros, S. Kay, K.A. Anderberg, M.K. Baker, Y. Wang, R. Zhao, J. Meiklejohn, M. Climstein, A. O’Sullivan, N. de Vos, B.T. Baune, S.N. Blair, D. Simar, K. Rooney, N. Singh, M.A. Fiatarone Singh, Changes in insulin resistance and HbA1c Are related to exercise-mediated changes in body composition in older adults with type 2 diabetes: interim outcomes from the GREAT2DO trial. Diabetes Care 36, 2372–2379 (2013)CrossRefGoogle Scholar
  8. 8.
    N.D. Eves, R.C. Plotnikoff, Resistance training and type 2 diabetes: considerations for implementation at the population level. Diabetes Care 29, 1933–1941 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Eriksson, J. Tuominen, T. Valle, S. Sundberg, A. Sovijärvi, H. Lindholm, J. Tuomilehto, V. Koivisto, Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance? Horm. Metab. Res. 30, 37–41 (1998)CrossRefGoogle Scholar
  10. 10.
    W.J. Miller, W.M. Sherman, J.L. Ivy, Effect of strength training on glucose tolerance and post-glucose insulin response. Med. Sci. Sports Exerc. 16, 539–543 (1984)PubMedGoogle Scholar
  11. 11.
    E.T. Poehlman, R.V. Dvorak, W.F. DeNino, M. Brochu, P.A. Ades, Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial. J. Clin. Endocrinol. Metab. 85, 2463–2468 (2000)PubMedGoogle Scholar
  12. 12.
    A. Honkola, T. Forsen, J. Eriksson, Resistance training improves the metabolic profile in individuals with type 2 diabetes. Acta Diabetol. 34, 245–248 (1997)CrossRefGoogle Scholar
  13. 13.
    S. Balducci, S. Zanuso, A. Nicolucci, P. De Feo, S. Cavallo, P. Cardelli, S. Fallucca, E. Alessi, F. Fallucca, G. Pugliese, Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial: the Italian Diabetes and Exercise Study (IDES). Arch. Intern. Med. 170, 1794–1803 (2010)CrossRefGoogle Scholar
  14. 14.
    D.L. Hare, T.M. Ryan, S.E. Selig, A.M. Pellizzer, T.V. Wrigley, H. Krum, Resistance exercise training increases muscle strength, endurance, and blood flow in patients with chronic heart failure. Am. J. Cardiol. 83, 1674–1677 (1999)CrossRefGoogle Scholar
  15. 15.
    M.M. Ouellette, N.K. LeBrasseur, J.F. Bean, E. Phillips, J. Stein, W.R. Frontera, R.A. Fielding, High-Intensity resistance training improves muscle strength, self-reported function, and disability in long-term. Stroke 35, 1404–1409 (2004)CrossRefGoogle Scholar
  16. 16.
    A.S. Ryan, D.E. Hurlbut, M.E. Lott, F.M. Ivey, J. Fleg, B.F. Hurley, A.P. Goldberg, Insulin action after resistive training in insulin resistant older men and women. J. Am. Geriatr. Soc. 49, 247–253 (2001)CrossRefGoogle Scholar
  17. 17.
    M.E. Nelson, M.A. Fiatarone, C.M. Morganti, I. Trice, R.A. Greenberg, W.J. Evans, Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. a randomized controlled trial. JAMA 272, 1909–1914 (1994)CrossRefGoogle Scholar
  18. 18.
    B.F. Hurley, S.M. Roth, Strength training in the elderly. Sports Med. 30, 249–268 (2000)CrossRefGoogle Scholar
  19. 19.
    P.A. Ades, Resistance training increases total daily energy expenditure in disabled older women with coronary heart disease. J. Appl. Physiol. 98, 1280–1285 (2005)CrossRefGoogle Scholar
  20. 20.
    G.R. Hunter, C.J. Wetzstein, D.A. Fields, A. Brown, M.M. Bamman, Resistance training increases total energy expenditure and free-living physical activity in older adults. J. Appl. Physiol. (1985) 89, 977–984 (2000)CrossRefGoogle Scholar
  21. 21.
    R.D. Reid, H.E. Tulloch, R.J. Sigal, G.P. Kenny, M. Fortier, L. McDonnell, G.A. Wells, N.G. Boulé, P. Phillips, D. Coyle, Effects of aerobic exercise, resistance exercise or both, on patient-reported health status and well-being in type 2 diabetes mellitus: a randomised trial. Diabetologia 53, 632–640 (2010)CrossRefGoogle Scholar
  22. 22.
    E.H. Morrato, J.O. Hill, H.R. Wyatt, V. Ghushchyan, P.W. Sullivan, Physical activity in U.S. adults with diabetes and at risk for developing diabetes, 2003. Diabetes Care 30, 203–209 (2007)CrossRefGoogle Scholar
  23. 23.
    S.R. Colberg, R.J. Sigal, B. Fernhall, J.G. Regensteiner, B.J. Blissmer, R.R. Rubin, L. Chasan-Taber, A.L. Albright, B. Braun, Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care (2010). Scholar
  24. 24.
    M.D. Hordern, D.W. Dunstan, J.B. Prins, M.K. Baker, M.A.F. Singh, J.S. Coombes, Exercise prescription for patients with type 2 diabetes and pre-diabetes: a position statement from exercise and sport science Australia. J. Sci. Med. Sport 15, 25–31 (2012)CrossRefGoogle Scholar
  25. 25.
    R.C. Plotnikoff, L.M. Taylor, P.M. Wilson, K.S. Courneya, R.J. Sigal, N. Birkett, K. Raine, L.W. Svenson, Factors associated with physical activity in canadian adults with diabetes. Med. Sci. Sports Exerc. 38, 1526–1534 (2006)CrossRefGoogle Scholar
  26. 26.
    R.J. Sigal, G.P. Kenny, D.H. Wasserman, C. Castaneda-Sceppa, R.D. White, Physical activity/exercise and type 2 diabetes: a consensus statement from the american diabetes association. Diabetes Care 29, 1433–1438 (2006)CrossRefGoogle Scholar
  27. 27.
    G. Borg, Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2, 92–98 (1970)PubMedGoogle Scholar
  28. 28.
    M.J. Karvonen, E. Kentala, O. Mustala, The effects of training on heart rate; a longitudinal study. Ann. Med. Exp. Biol. Fenn. 35, 307–315 (1957)PubMedGoogle Scholar
  29. 29.
    I. Janssen, S.B. Heymsfield, Z. Wang, R. Ross, Skeletal muscle mass and distribution in 468 men and women aged 18–88 Yr. J. Appl. Physiol. 89, 81–88 (2000)CrossRefGoogle Scholar
  30. 30.
    J.O. Holloszy, The biology of aging. Mayo Clin. Proc. 75, S3–S8 (2000). SupplCrossRefGoogle Scholar
  31. 31.
    J. Lexell, C.C. Taylor, M. Sjöström, What is the cause of the ageing atrophy? total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84, 275–294 (1988).CrossRefGoogle Scholar
  32. 32.
    P. Srikanthan, A.L. Hevener, A.S. Karlamangla, Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS ONE (2010). Scholar
  33. 33.
    M. Nishitani, K. Shimada, S. Sunayama, Y. Masaki, A. Kume, K. Fukao, E. Sai, H. Yamashita, H. Ohmura, T. Onishi, M. Shioya, H. Sato, A. Shimada, T. Yamamoto, A. Amano, H. Daida, Impact of diabetes on muscle mass, muscle strength, and exercise tolerance in patients after coronary artery bypass grafting. J. Cardiol. 58, 173–180 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Park, B. Goodpaster, J. Lee, L. Kuller, R. Boudreau, N. De Rekeneire, T. Harris, S. Kritchevsky, F. Tylavsky, M. Nevitt, Y. Cho, A. Newman, Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32, 1993–1997 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Leenders, L.B. Verdijk, L. van der Hoeven, J.J. Adam, J. van Kranenburg, R. Nilwik, L.J.C. Van Loon, Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J. Am. Med. Dir. Assoc. 14, 585–592 (2013)CrossRefGoogle Scholar
  36. 36.
    J.R. Ruiz, X. Sui, F. Lobelo, J.R. Morrow, A.W. Jackson, M. Sjostrom, S.N. Blair, Association between muscular strength and mortality in men: prospective cohort study. BMJ 337, a439–a439 (2008)CrossRefGoogle Scholar
  37. 37.
    K.F. Petersen, D. Befroy, S. Dufour, J. Dziura, C. Ariyan, D.L. Rothman, L. DiPietro, G.W. Cline, G.I. Shulman, Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003)CrossRefGoogle Scholar
  38. 38.
    T.S. Church, S.N. Blair, S. Cocreham, W. Johnson, K. Kramer, C.R. Mikus, V. Myers, M. Nauta, R.Q. Rodarte, L. Sparks, A. Thompson, C.P. Earnest, Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA 304, 2253–2262 (2010)CrossRefGoogle Scholar
  39. 39.
    P. Koh-Banerjee, N.F. Chu, D. Spiegelman, B. Rosner, G. Colditz, W. Willett, E. Rimm, Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16 587 US men. Am. J. Clin. Nutr. 78, 719–727 (2003)CrossRefGoogle Scholar
  40. 40.
    A. Grnøtved, E.B. Rimm, W.C. Willett, L.B. Andersen, F.B. Hu, A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch. Intern. Med. 172, 1306–1312 (2012)CrossRefGoogle Scholar
  41. 41.
    M.D. Phillips, M.G. Flynn, B.K. McFarlin, L.K. Stewart, K.L. Timmerman, Resistance training at eight-repetition maximum reduces the inflammatory milieu in elderly women. Med. Sci. Sports Exerc. 42, 314–325 (2010)CrossRefGoogle Scholar
  42. 42.
    S.J. Lee, F. Bacha, T. Hannon, J.L. Kuk, C. Boesch, S. Arslanian, Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys a randomized, controlled trial. Diabetes 61, 2787–2795 (2012)CrossRefGoogle Scholar
  43. 43.
    J. Ibáñez, M. Izquierdo, C. Martínez-Labari, F. Ortega, A. Grijalba, L. Forga, F. Idoate, M. García-Unciti, J.M. Fernández-Real, E.M. Gorostiaga, Resistance training improves cardiovascular risk factors in obese women despite a significative decrease in serum adiponectin levels. Obesity (Silver Spring) 18, 535–541 (2010)CrossRefGoogle Scholar
  44. 44.
    C.J. Currie, J.R. Peters, A. Tynan, M. Evans, R.J. Heine, O.L. Bracco, T. Zagar, C.D. Poole, Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet 375, 481–489 (2010)CrossRefGoogle Scholar
  45. 45.
    D. Umpierre, C.K. Kramer, C.B. Leita, J.L. Gross, J.P. Ribeiro, B.D. Schaan, Physical activity advice only or structured exercise training and association with HbA 1c levels in type 2 diabetes. JAMA 305, 1790–1799 (2011)CrossRefGoogle Scholar
  46. 46.
    B. Strasser, U. Siebert, W. Schobersberger, Resistance training in the treatment of the metabolic syndrome: a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med. 40, 397–415 (2010)CrossRefGoogle Scholar
  47. 47.
    M.A. Williams, W.L. Haskell, P.A. Ades, E.A. Amsterdam, V. Bittner, B.A. Franklin, M. Gulanick, S.T. Laing, K.J. Stewart, Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on clinical cardiology and council on nutrition, physical activity, and metabolism. Circulation 116, 572–584 (2007)CrossRefGoogle Scholar
  48. 48.
    M.K. Holten, M. Zacho, M. Gaster, C. Juel, J.F.P. Wojtaszewski, F. Dela, Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 53, 294–305 (2004)CrossRefGoogle Scholar
  49. 49.
    C. Castaneda, J.E. Layne, L. Munoz-Orians, P.L. Gordon, J. Walsmith, M. Foldvari, R. Roubenoff, K.L. Tucker, M.E. Nelson, A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care 25, 2335–2341 (2002)CrossRefGoogle Scholar
  50. 50.
    B.B. Yaspelkis, Resistance training improves insulin signaling and action in skeletal muscle. Exerc. Sport. Sci. Rev. 34, 42–46 (2006)CrossRefGoogle Scholar
  51. 51.
    J.L. Kuk, K. Kilpatrick, L.E. Davidson, R. Hudson, R. Ross, Whole-body skeletal muscle mass is not related to glucose tolerance or insulin sensitivity in overweight and obese men and women. Appl. Physiol. Nutr. Metab. 33, 769–774 (2008)CrossRefGoogle Scholar
  52. 52.
    D.W. Dunstan, I.B. Puddey, L.J. Beilin, V. Burke, A.R. Morton, K.G. Stanton, Effects of a short-term circuit weight training program on glycaemic control in NIDDM. Diabetes Res. Clin. Pract. 40, 53–61 (1998)CrossRefGoogle Scholar
  53. 53.
    T. Ishii, T. Yamakita, T. Sato, S. Tanaka, S. Fujii, Resistance training improves insulin sensitivity in NIDDM subjects without altering maximal oxygen uptake. Diabetes Care 21, 1353–1355 (1998)CrossRefGoogle Scholar
  54. 54.
    E. Bacchi, C. Negri, G. Targher, N. Faccioli, M. Lanza, G. Zoppini, E. Zanolin, F. Schena, E. Bonora, P. Moghetti, Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 randomized trial). Hepatology 58, 1287–1295 (2013).CrossRefGoogle Scholar
  55. 55.
    B. Strasser, D. Pesta, Resistance training for diabetes prevention and therapy: experimental findings and molecular mechanisms. Biomed. Res. Int. (2013). Scholar
  56. 56.
    R.J. Sigal, G.P. Kenny, N.G. Boulé, G.A. Wells, D. Prud’homme, M. Fortier, R.D. Reid, H. Tulloch, D. Coyle, P. Phillips, A. Jennings, J. Jaffey, Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann. Intern. Med. 147, 357–369 (2007)CrossRefGoogle Scholar
  57. 57.
    L.M. Sparks, N.M. Johannsen, T.S. Church, C.P. Earnest, E. Moonen-Kornips, C. Moro, M.K.C. Hesselink, S.R. Smith, P. Schrauwen, Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J. Clin. Endocrinol. Metab. 98, 1694–1702 (2013)CrossRefGoogle Scholar
  58. 58.
    M. Röhling, C. Herder, M. Roden, T. Stemper, K. Müssig, Effects of long-term exercise interventions on glycaemic control in type 1 and type 2 diabetes: a systematic review. Exp. Clin. Endocrinol. Diabetes 124, 487–494 (2016)CrossRefGoogle Scholar
  59. 59.
    K. Osterberg, C. Melby, Effects of acute resistance exercise on postexercise oxigen consumption and resting metabolic rate in young women. Int. J. Sport. Nutr. Exerc. Metab. 10, 71–81 (2000)CrossRefGoogle Scholar
  60. 60.
    M.J. Ormsbee, J.P. Thyfault, E.A. Johnson, R.M. Kraus, M.D. Choi, R.C. Hickner, Fat metabolism and acute resistance exercise in trained men. J. Appl. Physiol. (1985) 102, 1767–1772 (2007)CrossRefGoogle Scholar
  61. 61.
    S. Schiaffino, C. Mammucari, Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle (2011). Scholar
  62. 62.
    M.A. Tresierras, G.J. Balady, Resistance training in the treatment of diabetes and obesity: mechanisms and outcomes. J. Cardiopulm. Rehabil. Prev. 29, 67–75 (2009)CrossRefGoogle Scholar
  63. 63.
    R.D. Russell, D. Hu, T. Greenaway, S.J. Blackwood, R.M. Dwyer, J.E. Sharman, G. Jones, K.A. Squibb, A.A. Brown, P. Otahal, M. Boman, H. Al-Aubaidy, D. Premilovac, C.K. Roberts, S. Hitchins, S.M. Richards, S. Rattigan, M.A. Keske, Skeletal muscle microvascular-linked improvements in glycemic control from resistance training in individuals with type 2 diabetes. Diabetes Care 40, 1256–1263 (2017)CrossRefGoogle Scholar
  64. 64.
    N.G. Boulé, G.P. Kenny, E. Haddad, G.A. Wells, R.J. Sigal, Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 46, 1071–1081 (2003)CrossRefGoogle Scholar
  65. 65.
    H.C. Dreyer, S. Fujita, J.G. Cadenas, D.L. Chinkes, E. Volpi, B.B. Rasmussen, Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J. Physiol. 576, 613–624 (2006)CrossRefGoogle Scholar
  66. 66.
    J. Mu, J.T. Brozinick, O. Valladares, M. Bucan, M.J. Birnbaum, A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085–1094 (2001)CrossRefGoogle Scholar
  67. 67.
    L. Xu, M. Ash, S. Abdel-Aleem, J.E. Lowe, M. Badr, Hyperinsulinemia Inhibits hepatic peroxisomal β-oxidation in rats. Horm. Metab. Res. 27, 76–78 (1995)CrossRefGoogle Scholar
  68. 68.
    D. Pesta, F. Hoppel, C. Macek, H. Messner, M. Faulhaber, C. Kobel, W. Parson, M. Burtscher, M. Schocke, E. Gnaiger, Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1078–R1087 (2011)CrossRefGoogle Scholar
  69. 69.
    H. Hamasaki, Y. Kawashima, Y. Tamada, M. Furuta, H. Katsuyama, A. Sako, H. Yanai, Associations of low-intensity resistance training with body composition and lipid profile in obese patients with type 2 diabetes. PLoS ONE 10, e0132959 (2015)CrossRefGoogle Scholar
  70. 70.
    K.E. Iscoe, M.C. Riddell, Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with type 1 diabetes mellitus. Diabet. Med. 28, 824–832 (2011)CrossRefGoogle Scholar
  71. 71.
    H. Ishiguro, S. Kodama, C. Horikawa, K. Fujihara, A.S. Hirose, R. Hirasawa, Y. Yachi, N. Ohara, H. Shimano, O. Hanyu, H. Sone, In search of the ideal resistance training program to improve glycemic control and its indication for patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Sports Med. 46, 67–77 (2016)CrossRefGoogle Scholar
  72. 72.
    F.A. van de Laar, P.L. Lucassen, R.P. Akkermans, E.H. van de Lisdonk, G.E. Rutten, C. van Weel, Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a cochrane systematic review and meta-analysis. Diabetes Care 28, 154–163 (2005)CrossRefGoogle Scholar
  73. 73.
    S.K. Malin, B. Braun, Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc. Sport. Sci. Rev. 44, 4–11 (2016)CrossRefGoogle Scholar
  74. 74.
    R Codella, I Terruzzi, L Luzi. Treatment of Diabetes with Lifestyle Changes: Physical Activity. Diabetes. Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment. Springer: Cham, 2018; 1–14.Google Scholar
  75. 75.
    A. Coppola, L. Sasso, A. Bagnasco, A. Giustina, C. Gazzaruso, The role of patient education in the prevention and management of type 2 diabetes: an overview. Endocrine 53, 18–27 (2016)CrossRefGoogle Scholar
  76. 76.
    C. Gazzaruso, M. Fodaro, A. Coppola, Structured therapeutic education in diabetes: is it time to re-write the chapter on the prevention of diabetic complications? Endocrine 53, 347–349 (2016)CrossRefGoogle Scholar
  77. 77.
    E.W. Gregg, J. Lin, B. Bardenheier, H. Chen, W.J. Rejeski, X. Zhuo, A.L. Hergenroeder, S.B. Kritchevsky, A.L. Peters, L.E. Wagenknecht, E.H. Ip, M.A. Espeland, Look AHEAD Study Group, Impact of intensive lifestyle intervention on disability-free life expectancy: the look AHEAD study. Diabetes Care 14, 172110 (2018).Google Scholar
  78. 78.
    X. He, J. Li, B. Wang, Q. Yao, L. Li, R. Song, X. Shi, J. Zhang, Diabetes self-management education reduces risk of all-cause mortality in type 2 diabetes patients: a systematic review and meta-analysis. Endocrine 55, 712 (2017)CrossRefGoogle Scholar
  79. 79.
    L. Haas, M. Maryniuk, J. Beck, C.E. Cox, P. Duker, L. Edwards, E.B. Fisher, L. Hanson, D. Kent, L. Kolb, S. McLaughlin, E. Orzeck, J.D. Piette, A.S. Rhinehart, R. Rothman, S. Sklaroff, D. Tomky, G. Youssef, 2012 Standards Revision Task Force National standards for diabetes self-management education and support. Diabetes Care 37, S144–S153 (2014).CrossRefGoogle Scholar
  80. 80.
    American Diabetes Association, 3. Foundations of care and comprehensive medical evaluation. Diabetes Care 39, S23–S35 (2016)CrossRefGoogle Scholar
  81. 81.
    A. Nicolucci, D. Cavaliere, N. Scorpiglione, F. Carinci, F. Capani, G. Tognoni, M.M. Benedetti, A comprehensive assessment of the avoidability of long-term complications of diabetes. A case-control study. SID-AMD Italian Study Group for the Implementation of the St. Vincent Declaration. Diabetes Care 19, 927–933 (1996)CrossRefGoogle Scholar
  82. 82.
    J. Sperl-Hillen, S. Beaton, O. Fernandes, A. Von Worley, G. Vazquez-Benitez, E. Parker, A. Hanson, J. Lavin-Tompkins, P. Glasrud, H. Davis, K. Adams, W. Parsons, C.V. Spain, Comparative effectiveness of patient education methods for type 2 diabetes. Arch. Intern. Med. 171(22), 2001 (2011)CrossRefGoogle Scholar
  83. 83.
    M. Adamo, R. Codella, F. Casiraghi, A. Ferrulli, C. Macrì, E. Bazzigaluppi, I. Terruzzi, L. Inverardi, C. Ricordi, L. Luzi, Active subjects with autoimmune type 1 diabetes have better metabolic profiles than sedentary controls. Cell Transplant. 26, 23–32 (2017)CrossRefGoogle Scholar
  84. 84.
    R. Codella, M. Adamo, P. Maffi, L. Piemonti, A. Secchi, L. Luzi, Ultra-marathon 100 km in an islet-transplanted runner. Acta Diabetol. 54(7), 703–706 (2017)CrossRefGoogle Scholar
  85. 85.
    R. Codella, I. Terruzzi, L. Luzi, Why should people with type 1 diabetes exercise regularly? Acta Diabetol. 54(7), 615–630 (2017)CrossRefGoogle Scholar
  86. 86.
    J.C. Baldi, N. Snowling, Resistance training improves glycaemic control in obese type 2 diabetic men. Int. J. Sports Med. 24, 419–423 (2003)CrossRefGoogle Scholar
  87. 87.
    S. Balducci, S. Zanuso, A. Nicolucci, F. Fernando, S. Cavallo, P. Cardelli, S. Fallucca, E. Alessi, C. Letizia, A. Jimenez, F. Fallucca, G. Pugliese, Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metab. Cardiovasc. Dis. 20, 608–617 (2010)CrossRefGoogle Scholar
  88. 88.
    D.J. Cuff, G.S. Meneilly, A. Martin, A. Ignaszewski, H.D. Tildesley, J.J. Frohlich, Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 26, 2977–2982 (2003)CrossRefGoogle Scholar
  89. 89.
    I. Janssen, A. Fortier, R. Hudson, R. Ross, Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care 25, 431–438 (2002)CrossRefGoogle Scholar
  90. 90.
    B. Rice, I. Janssen, R. Hudson, R. Ross, Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 22, 684–691 (1999)CrossRefGoogle Scholar
  91. 91.
    S.E. Riechman, Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J. Appl. Physiol. 97, 2214–2219 (2004)CrossRefGoogle Scholar
  92. 92.
    A.R. Nielsen, R. Mounier, P. Plomgaard, O.H. Mortensen, M. Penkowa, T. Speerschneider, H. Pilegaard, B.K. Pedersen, Expression of interleukin-15 in human skeletal muscle - effect of exercise and muscle fibre type composition. J. Physiol. 584, 305–312 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Roberto Codella
    • 1
    • 2
    Email author
  • Marta Ialacqua
    • 1
  • Ileana Terruzzi
    • 3
  • Livio Luzi
    • 1
    • 2
  1. 1.Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanItaly
  2. 2.Metabolism Research Center, IRCCS Policlinico San DonatoSan Donato MilaneseItaly
  3. 3.Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation UnitSan Raffaele Scientific InstituteMilanItaly

Personalised recommendations