Skip to main content

Advertisement

Log in

Why should people with type 1 diabetes exercise regularly?

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Plethoric evidence reminds of the protective effects of exercise against a number of health risks, across all ages, in the general population. The benefits of exercise for individuals with type 2 diabetes are indisputable. An in-depth understanding of energy metabolism has reasonably entailed exercise as a cornerstone in the lifestyle of almost all subjects with type 1 diabetes. Nevertheless, individuals with type 1 diabetes often fail in accomplishing exercise guidelines and they are less active than their peer without diabetes. Two major obstacles are feared by people with type 1 diabetes who wish to exercise regularly: management of blood glucose control and hypoglycemia. Nowadays, strategies, including glucose monitoring technology and insulin pump therapy, have significantly contributed to the participation in regular physical activity, and even in competitive sports, for people with type 1 diabetes. Novel modalities of training, like different intensity, interspersed exercise, are as well promising. The beneficial potential of exercise in type 1 diabetes is multi-faceted, and it has to be fully exploited because it goes beyond the insulin-mimetic action, possibly through immunomodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CGM:

Continuous glucose monitoring

CSII:

Continuous subcutaneous insulin infusion

CVD:

Cardiovascular disease

GLP-1:

Glucagon-like peptide-1

IL-6:

Interleukin 6

IMCL:

Intramyocellular lipid content

IT:

Islet transplantation

MDII:

Multiple daily insulin injections

NEFA:

Non-esterified fatty acid

SMBG:

Self-monitoring blood glucose

T1D:

Type 1 diabetes

References

  1. Kahn SE, Prigeon RL, McCulloch DK et al (1993) Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes 42:1663–1672

    Article  CAS  PubMed  Google Scholar 

  2. Codella R, Lanzoni G, Zoso A et al (2015) Moderate intensity training impact on the inflammatory status and glycemic profiles in NOD mice. J Diabetes Res. doi:10.1155/2015/737586

    Google Scholar 

  3. Luzi L, Codella R, Lauriola V et al (2011) Immunomodulatory effects of exercise in type 1 diabetes mellitus. Diabetes 60:A209–A210

    Article  CAS  Google Scholar 

  4. Codella R, Luzi L, Inverardi L, Ricordi C (2015) The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity. Eur Rev Med Pharmacol Sci 19:3709–3722

    CAS  PubMed  Google Scholar 

  5. Delmonte V, Peixoto EML, Poggioli R et al (2013) Ten years’ evaluation of diet, anthropometry, and physical exercise adherence after islet allotransplantation. Transpl Proc 45:2025–2028. doi:10.1016/j.transproceed.2013.01.031

    Article  CAS  Google Scholar 

  6. Adamo M, Codella R, Casiraghi F et al (2017) Active subjects with autoimmune type 1 diabetes have better metabolic profiles than sedentary controls. Cell Transpl 26(1):23–32

    Article  CAS  Google Scholar 

  7. Delmonte V, Codella R, Piemonti L et al (2014) Effects of exercise in a islet-transplanted half-marathon runner: outcome on diabetes management, training and metabolic profile. Sport Sci Health 10:49–52. doi:10.1007/s11332-013-0164-7

    Article  Google Scholar 

  8. Codella R, Adamo M, Maffi P et al (2016) Ultra-marathon 100 km in an islet-transplanted runner. Acta Diabetol. doi:10.1007/s00592-016-0938-x

    PubMed  Google Scholar 

  9. Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12:6–33

    PubMed  Google Scholar 

  10. Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 105:13163–13168. doi:10.1073/pnas.0801059105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489. doi:10.1038/nm.2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. da Silva Krause M, Bittencourt A, Homem de Bittencourt PI et al (2012) Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets. J Endocrinol 214:301–311. doi:10.1530/JOE-12-0223

    Article  CAS  Google Scholar 

  13. Suzuki T, Imai J, Yamada T et al (2011) Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: potential involvement of the PLC-IP3-dependent pathway. Diabetes 60:537–547. doi:10.2337/db10-0796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Codella R, Terruzzi I, Luzi L (2016) Sugars, exercise and health. J Affect Disord. doi:10.1016/j.jad.2016.10.035

    PubMed  Google Scholar 

  15. Rabasa-Lhoret R, Bourque J, Ducros F, Chiasson JL (2001) Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-lispro). Diabetes Care 24:625–630. doi:10.2337/diacare.24.4.625

    Article  CAS  PubMed  Google Scholar 

  16. Dubé MC, Weisnagel SJ, Prud’homme D, Lavoie C (2005) Exercise and newer insulins: How much glucose supplement to avoid hypoglycemia? Med Sci Sports Exerc 37:1276–1282. doi:10.1249/01.mss.0000174950.25188.36

    Article  PubMed  CAS  Google Scholar 

  17. Yardley JE, Iscoe KE, Sigal RJ et al (2013) Insulin pump therapy is associated with less post-exercise hyperglycemia than multiple daily injections: an observational study of physically active type 1 diabetes patients. Diabetes Technol Ther. doi:10.1089/dia.2012.0168

    Google Scholar 

  18. Cryer PE (2010) Hypoglycemia in type 1 diabetes mellitus. Endocrinol Metab Clin North Am 39:641–654. doi:10.1016/j.ecl.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cryer PE (2008) The barrier of hypoglycemia in diabetes. Diabetes 57:3169–3176. doi:10.2337/db08-1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis SN, Mann S, Galassetti P et al (2000) Effects of differing durations of antecedent hypoglycemia on counterregulatory responses to subsequent hypoglycemia in normal humans. Diabetes 49:1897–1903. doi:10.2337/diabetes.49.11.1897

    Article  CAS  PubMed  Google Scholar 

  21. Galassetti P, Tate D, Neill RA et al (2003) Effect of antecedent hypoglycemia on counterregulatory responses to subsequent euglycemic exercise in type 1 diabetes. Diabetes 52:1761–1769. doi:10.2337/diabetes.52.7.1761

    Article  CAS  PubMed  Google Scholar 

  22. Lewis GD, Farrell L, Wood MJ et al (2010) Metabolic signatures of exercise in human plasma. Sci Transl Med 2:33–37. doi:10.1126/scitranslmed.3001006

    Article  CAS  Google Scholar 

  23. Brugnara L, Vinaixa M, Murillo S et al (2012) Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus. PLoS ONE. doi:10.1371/journal.pone.0040600

    PubMed  PubMed Central  Google Scholar 

  24. Chatzinikolaou A, Fatouros I, Petridou A et al (2008) Adipose tissue lipolysis is upregulated in lean and obese men during acute resistance exercise. Diabetes Care 31:1397–1399. doi:10.2337/dc08-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davison GW, George L, Jackson SK et al (2002) Exercise, free radicals, and lipid peroxidation in type 1 diabetes mellitus. Free Radic Biol Med 33:1543–1551

    Article  CAS  PubMed  Google Scholar 

  26. Jia G, DeMarco VG, Sowers JR (2015) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12:144–153. doi:10.1038/nrendo.2015.216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kaul K, Apostolopoulou M, Roden M (2015) Insulin resistance in type 1 diabetes mellitus. Metabolism 64:1629–1639. doi:10.1016/j.metabol.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  28. Schauer IE, Snell-Bergeon JK, Bergman BC et al (2011) Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: the CACTI study. Diabetes 60:306–314. doi:10.2337/db10-0328

    Article  CAS  PubMed  Google Scholar 

  29. Caprio S, Amiel S, Tamborlane WV et al (1990) Defective free-fatty acid and oxidative glucose metabolism in IDDM during hypoglycemia. Influence of glycemic control. Diabetes 39:134–141

    Article  CAS  PubMed  Google Scholar 

  30. Bergman BC, Howard D, Schauer IE et al (2012) Features of hepatic and skeletal muscle insulin resistance unique to type 1 diabetes. J Clin Endocrinol Metab 97:1663–1672. doi:10.1210/jc.2011-3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nadeau KJ, Regensteiner JG, Bauer TA et al (2010) Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab 95:513–521. doi:10.1210/jc.2009-1756

    Article  CAS  PubMed  Google Scholar 

  32. Perseghin G, Lattuada G, Danna M et al (2003) Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 285:E1174–E1181. doi:10.1152/ajpendo.00279.2003

    Article  CAS  PubMed  Google Scholar 

  33. Levin K, Daa Schroeder H, Alford FP, Beck-Nielsen H (2001) Morphometric documentation of abnormal intramyocellular fat storage and reduced glycogen in obese patients with Type II diabetes. Diabetologia 44:824–833. doi:10.1007/s001250100545

    Article  CAS  PubMed  Google Scholar 

  34. Caprio S, Napoli R, Saccà L et al (1992) Impaired stimulation of gluconeogenesis during prolonged hypoglycemia in intensively treated insulin-dependent diabetic subjects. J Clin Endocrinol Metab 75:1076–1080. doi:10.1210/jcem.75.4.1400874

    CAS  PubMed  Google Scholar 

  35. Siafarikas A, Johnston RJ, Bulsara MK et al (2012) Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes. Diabetes Care 35:1757–1762. doi:10.2337/dc11-2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Popp DA, Shah SD, Cryer PE (1982) Role of epinephrine-mediated beta-adrenergic mechanisms in hypoglycemic glucose counterregulation and posthypoglycemic hyperglycemia in insulin-dependent diabetes mellitus. J Clin Invest 69:315–326. doi:10.1172/jci110455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoffman RP (2007) Sympathetic mechanisms of hypoglycemic counterregulation. Curr Diabetes Rev 3:185–193

    Article  CAS  PubMed  Google Scholar 

  38. Tesfaye N, Seaquist ER (2010) Neuroendocrine responses to hypoglycemia. Ann N Y Acad Sci 1212:12–28. doi:10.1111/j.1749-6632.2010.05820.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sprague JE, Arbeláez AM (2011) Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev 9:463–73; quiz 474–5

  40. Wasserman DH (2009) Four grams of glucose. Am J Physiol Endocrinol Metab 296:E11–E21. doi:10.1152/ajpendo.90563.2008

    Article  CAS  PubMed  Google Scholar 

  41. Camacho RC, Galassetti P, Davis SN, Wasserman DH (2005) Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exerc Sport Sci Rev 33:17–23

    PubMed  Google Scholar 

  42. Mallad A, Hinshaw L, Schiavon M et al (2015) Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. Am J Physiol Endocrinol Metab 308:E1106–E1115. doi:10.1152/ajpendo.00014.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chokkalingam K, Tsintzas K, Snaar JEM et al (2007) Hyperinsulinaemia during exercise does not suppress hepatic glycogen concentrations in patients with type 1 diabetes: a magnetic resonance spectroscopy study. Diabetologia 50:1921–1929. doi:10.1007/s00125-007-0747-4

    Article  CAS  PubMed  Google Scholar 

  44. Schneider SH, Vitug A, Ananthakrishnan R, Khachadurian AK (1991) Impaired adrenergic response to prolonged exercise in type I diabetes. Metabolism 40:1219–1225. doi:10.1016/0026-0495(91)90219-M

    Article  CAS  PubMed  Google Scholar 

  45. Kacerovsky M, Jones J, Schmid AI et al (2011) Postprandial and fasting hepatic glucose fluxes in long-standing type 1 diabetes. Diabetes 60:1752–1758. doi:10.2337/db10-1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McMahon SK, Ferreira LD, Ratnam N et al (2007) Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab 92:963–968. doi:10.1210/jc.2006-2263

    Article  CAS  PubMed  Google Scholar 

  47. The Diabetes Research in Children E, Mauras N, Beck RW et al (2005) Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr 147:528–534. doi:10.1016/j.jpeds.2005.04.065

    Article  CAS  Google Scholar 

  48. Taplin CE, Cobry E, Messer L et al (2010) Preventing post-exercise nocturnal hypoglycemia in children with type 1 diabetes. J Pediatr 157(784–788):e1. doi:10.1016/j.jpeds.2010.06.004

    Google Scholar 

  49. Iscoe KE, Corcoran M, Riddell MC (2008) High rates of nocturnal hypoglycemia in a unique sports camp for athletes with type 1 diabetes: lessons learned from continuous glucose monitoring systems. Can J Diabetes 32:182–189. doi:10.1016/S1499-2671(08)23008-X

    Article  CAS  Google Scholar 

  50. Iscoe KE, Campbell JE, Jamnik V et al (2006) Efficacy of continuous real-time blood glucose monitoring during and after prolonged high-intensity cycling exercise: spinning with a continuous glucose monitoring system. Diabetes Technol Ther 8:627–635. doi:10.1089/dia.2006.8.627

    Article  CAS  PubMed  Google Scholar 

  51. The DR in CNSG (2005) Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr 147:528–534. doi:10.1016/j.jpeds.2005.04.065

    Article  CAS  Google Scholar 

  52. Maran A, Pavan P, Bonsembiante B et al (2010) Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther 12:763–768. doi:10.1089/dia.2010.0038

    Article  PubMed  Google Scholar 

  53. American Diabetes Association (2014) Standards of medical care in diabetes–2014. Diabetes Care 37:S14–S80. doi:10.2337/dc14-S014

    Article  Google Scholar 

  54. Benedini S, Longo S, Caumo A et al (2012) Metabolic and hormonal responses to a single session of kumite (free non-contact fight) and kata (highly ritualized fight) in karate athletes. Sport Sci Health 8:81–85. doi:10.1007/s11332-012-0132-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Delvecchio M, Zecchino C, Salzano G et al (2009) Effects of moderate-severe exercise on blood glucose in Type 1 diabetic adolescents treated with insulin pump or glargine insulin. J Endocrinol Invest 32:519–524. doi:10.1007/BF03346499

    Article  CAS  PubMed  Google Scholar 

  56. Marliss EB, Vranic M (2002) Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes. doi:10.2337/diabetes.51.2007.S271

    PubMed  Google Scholar 

  57. Robertson K, Adolfsson P, Scheiner G et al (2009) Exercise in children and adolescents with diabetes. Pediatr Diabetes 10:154–168. doi:10.1111/j.1399-5448.2009.00567.x

    Article  PubMed  Google Scholar 

  58. Riddell MC, Sigal RJ (2013) Physical activity, exercise and diabetes. Can J Diabetes 37:359–360. doi:10.1016/j.jcjd.2013.10.001

    Article  PubMed  Google Scholar 

  59. Gibney J, Healy M-L, Sönksen PH (2007) The growth hormone/insulin-like growth factor-I axis in exercise and sport. Endocr Rev 28:603–624. doi:10.1210/er.2006-0052

    Article  CAS  PubMed  Google Scholar 

  60. Pritzlaff CJ, Wideman L, Blumer J et al (2000) Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. J Appl Physiol 89:937–946

    CAS  PubMed  Google Scholar 

  61. Pritzlaff-Roy CJ, Widemen L, Weltman JY et al (2002) Gender governs the relationship between exercise intensity and growth hormone release in young adults. J Appl Physiol 92:2053–2060. doi:10.1152/japplphysiol.01018.2001

    Article  CAS  PubMed  Google Scholar 

  62. Wideman L, Weltman JY, Hartman ML et al (2002) Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports Med 32:987–1004

    Article  PubMed  Google Scholar 

  63. Brooks G (2009) Cell–cell and intracellular lactate shuttles. J Physiol 587:5591–5600. doi:10.1113/jphysiol.2009.178350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Harmer AR, Chisholm DJ, McKenna MJ et al (2008) Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes. Diabetes Care 31:2097–2102. doi:10.2337/dc08-0329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fahey AJ, Paramalingam N, Davey RJ et al (2012) The effect of a short sprint on postexercise whole-body glucose production and utilization rates in individuals with type 1 diabetes mellitus. J Clin Endocrinol Metab 97:4193–4200. doi:10.1210/jc.2012-1604

    Article  CAS  PubMed  Google Scholar 

  66. Bussau VA, Ferreira LD, Jones TW, Fournier PA (2006) The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care 29:601–606

    Article  PubMed  Google Scholar 

  67. Bussau VA, Ferreira LD, Jones TW, Fournier PA (2007) A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes. Diabetologia 50:1815–1818. doi:10.1007/s00125-007-0727-8

    Article  CAS  PubMed  Google Scholar 

  68. Yardley JE, Kenny GP, Perkins BA et al (2012) Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care 35:669–675. doi:10.2337/dc11-1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guelfi KJ, Ratnam N, Smythe GA et al (2007) Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am J Physiol Endocrinol Metab 292:E865–E870. doi:10.1152/ajpendo.00533.2006

    Article  CAS  PubMed  Google Scholar 

  70. Iscoe KE, Riddell MC (2011) Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus. Diabet Med 28:824–832. doi:10.1111/j.1464-5491.2011.03274.x

    Article  CAS  PubMed  Google Scholar 

  71. Bally L, Zueger T, Buehler T et al (2016) Metabolic and hormonal response to intermittent high-intensity and continuous moderate intensity exercise in individuals with type 1 diabetes: a randomised crossover study. Diabetologia 59:776–784. doi:10.1007/s00125-015-3854-7

    Article  CAS  PubMed  Google Scholar 

  72. Davey RJ, Jones TW, Fournier PA (2010) Effect of short-term use of a continuous glucose monitoring system with a real-time glucose display and a low glucose alarm on incidence and duration of hypoglycemia in a home setting in type 1 diabetes mellitus. J Diabetes Sci Technol 4:1457–1464

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bally L, Zueger T, Pasi N et al (2016) Accuracy of continuous glucose monitoring during differing exercise conditions. Diabetes Res Clin Pract 112:1–5. doi:10.1016/j.diabres.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  74. Home PD, Meneghini L, Wendisch U et al (2012) Improved health status with insulin degludec compared with insulin glargine in people with Type 1 diabetes. Diabet Med 29:716–720. doi:10.1111/j.1464-5491.2011.03547.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nasrallah SN, Nasrallah LR, Raymond Reynolds L (2012) Insulin degludec, the new generation basal insulin or just another basal insulin? Clin Med Insights Endocrinol Diabetes 5:31. doi:10.4137/CMED.S9494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pellegrini S, Cantarelli E, Sordi V et al (2016) The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol 53:683–691. doi:10.1007/s00592-016-0847-z

    Article  CAS  PubMed  Google Scholar 

  77. Hering BJ, Clarke WR, Bridges ND et al (2016) Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 39:1230–1240. doi:10.2337/dc15-1988

    Article  CAS  PubMed  Google Scholar 

  78. Delmonte V, Codella R, Piemonti L et al (2014) Effects of exercise in a islet-transplanted half-marathon runner: outcome on diabetes management, training and metabolic profile. Sport Sci Health. doi:10.1007/s11332-013-0164-7

    Google Scholar 

  79. Boehncke S, Poettgen K, Maser-Gluth C et al (2009) Endurance capabilities of triathlon competitors with type 1 diabetes mellitus. Dtsch Med Wochenschr 134:677–682. doi:10.1055/s-0029-1208104

    Article  CAS  PubMed  Google Scholar 

  80. Komatsu WR, Gabbay MAL, Castro ML et al (2005) Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes 6:145–149. doi:10.1111/j.1399-543X.2005.00120.x

    Article  PubMed  Google Scholar 

  81. Levy BI, Schiffrin EL, Mourad J-J et al (2008) Impaired Tissue Perfusion. Circulation 118:968

    Article  PubMed  Google Scholar 

  82. Kivelä R, Silvennoinen M, Touvra A-M et al (2006) Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J 20:1570–1572. doi:10.1096/fj.05-4780fje

    Article  PubMed  CAS  Google Scholar 

  83. Krause MP, Riddell MC, Hawke TJ (2011) Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 12:345–364. doi:10.1111/j.1399-5448.2010.00699.x

    Article  CAS  PubMed  Google Scholar 

  84. Chiang JL, Kirkman MS, Laffel LMB et al (2014) Type 1 Diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37:2034–2054. doi:10.2337/dc14-1140

    Article  PubMed  Google Scholar 

  85. Colberg SR, Sigal RJ, Yardley JE et al (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079. doi:10.2337/dc16-1728

    Article  PubMed  Google Scholar 

  86. Yardley JE, Kenny GP, Perkins B et al (2013) Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care 36:537–542. doi:10.2337/dc12-0963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Almeida S, Riddell MC, Cafarelli E (2008) Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus. Muscle Nerve 37:231–240. doi:10.1002/mus.20919

    Article  CAS  PubMed  Google Scholar 

  88. Magee MF, Bhatt BA (2001) Management of decompensated diabetes. Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome. Crit Care Clin 17:75–106

    Article  CAS  PubMed  Google Scholar 

  89. Horton WB, Subauste JS (2016) Care of the athlete with type 1 diabetes mellitus: a clinical review. Int J Endocrinol Metab 14:e36091. doi:10.5812/ijem.36091

    PubMed  PubMed Central  Google Scholar 

  90. Gallen IW, Hume C, Lumb A (2011) Fuelling the athlete with type 1 diabetes. Diabetes Obes Metab 13:130–136. doi:10.1111/j.1463-1326.2010.01319.x

    Article  CAS  PubMed  Google Scholar 

  91. Andersen H, Poulsen PL, Mogensen CE, Jakobsen J (1996) Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications. Diabetes 45:440–445

    Article  CAS  PubMed  Google Scholar 

  92. Andreassen CS, Jakobsen J, Ringgaard S et al (2009) Accelerated atrophy of lower leg and foot muscles–a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia 52:1182–1191. doi:10.1007/s00125-009-1320-0

    Article  CAS  PubMed  Google Scholar 

  93. Campbell MD, Walker M, Bracken RM et al (2015) Insulin therapy and dietary adjustments to normalize glycemia and prevent nocturnal hypoglycemia after evening exercise in type 1 diabetes: a randomized controlled trial. BMJ Open Diabetes Res Care 3:e000085–e000085. doi:10.1136/bmjdrc-2015-000085

    Article  PubMed  PubMed Central  Google Scholar 

  94. McAuley SA, Horsburgh JC, Ward GM et al (2016) Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study. Diabetologia. doi:10.1007/s00125-016-3981-9

    PubMed  Google Scholar 

  95. Sherr JL, Cengiz E, Palerm CC et al (2013) Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nightswith or without antecedent afternoon exercise in type 1 diabetes. Diabetes Care. doi:10.2337/dc13-0010

    Google Scholar 

  96. Martínez-Ramonde T, Alonso N, Cordido F et al (2014) Importance of exercise in the control of metabolic and inflammatory parameters at the moment of onset in type 1 diabetic subjects. Exp Clin Endocrinol Diabetes 122:334–340. doi:10.1055/s-0034-1372581

    Article  PubMed  CAS  Google Scholar 

  97. Davey RJ, Howe W, Paramalingam N et al (2013) The effect of midday moderate-intensity exercise on postexercise hypoglycemia risk in individuals with type 1 diabetes. J Clin Endocrinol Metab 98:2908–2914. doi:10.1210/jc.2013-1169

    Article  CAS  PubMed  Google Scholar 

  98. Tunar M, Ozen S, Goksen D et al (2012) The effects of Pilates on metabolic control and physical performance in adolescents with type 1 diabetes mellitus. J Diabetes Complications 26:348–351. doi:10.1016/j.jdiacomp.2012.04.006

    Article  PubMed  Google Scholar 

  99. Yardley JE, Kenny GP, Perkins BA et al (2015) Resistance exercise in already-active diabetic individuals (READI): study rationale, design and methods for a randomized controlled trial of resistance and aerobic exercise in type 1 diabetes. Contemp Clin Trials 41:129–138. doi:10.1016/j.cct.2014.12.017

    Article  PubMed  Google Scholar 

  100. Shetty VB, Fournier PA, Davey RJ et al (2016) Effect of exercise intensity on glucose requirements to maintain euglycemia during exercise in type 1 diabetes. J Clin Endocrinol Metab 101:972–980. doi:10.1210/jc.2015-4026

    Article  CAS  PubMed  Google Scholar 

  101. Davey RJ, Bussau VA, Paramalingam N et al (2013) A 10-s sprint performed after moderate-intensity exercise neither increases nor decreases the glucose requirement to prevent late-onset hypoglycemia in individuals with type 1 diabetes. Diabetes Care 36:4163–4165. doi:10.2337/dc12-2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Komatsu WR, Barros Neto TL, Chacra AR, Dib S (2010) Aerobic exercise capacity and pulmonary function in athletes with and without type 1 diabetes. Diabetes Care 33:2555–2557. doi:10.2337/dc10-0769

    Article  PubMed  PubMed Central  Google Scholar 

  103. Veves A, Saouaf R, Donaghue VM et al (1997) Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients. Diabetes 46:1846–1852

    Article  CAS  PubMed  Google Scholar 

  104. Gusso S, Hofman P, Lalande S et al (2008) Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetologia 51:1317–1320. doi:10.1007/s00125-008-1012-1

    Article  CAS  PubMed  Google Scholar 

  105. Salem MA, AboElAsrar MA, Elbarbary NS et al (2010) Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial. Diabetol Metab Syndr 2:47. doi:10.1186/1758-5996-2-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Herbst A, Kordonouri O, Schwab KO et al (2007) Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23,251 patients. Diabetes Care 30:2098–2100. doi:10.2337/dc06-2636

    Article  CAS  PubMed  Google Scholar 

  107. Huber J, Fröhlich-Reiterer EE, Sudi K et al (2010) The influence of physical activity on ghrelin and IGF-1/IGFBP-3 levels in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes 11:383–385. doi:10.1111/j.1399-5448.2009.00604.x

    Article  CAS  PubMed  Google Scholar 

  108. Laaksonen DE, Atalay M, Niskanen LK et al (2000) Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. Med Sci Sports Exerc 32:1541–1548

    Article  CAS  PubMed  Google Scholar 

  109. Dubé MC, Joanisse DR, Prud’homme D et al (2006) Muscle adiposity and body fat distribution in type 1 and type 2 diabetes: varying relationships according to diabetes type. Int J Obes 30:1721–1728. doi:10.1038/sj.ijo.0803337

    Article  Google Scholar 

  110. Kennedy A, Nirantharakumar K, Chimen M et al (2013) Does exercise improve glycaemic control in type 1 diabetes? A systematic review and meta-analysis. PLoS ONE. doi:10.1371/journal.pone.0058861

    Google Scholar 

  111. Bohn B, Herbst A, Pfeifer M et al (2015) Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: a cross-sectional multicenter study of 18,028 patients. Diabetes Care 38:1536–1543. doi:10.2337/dc15-0030

    Article  PubMed  Google Scholar 

  112. Quirk H, Blake H, Tennyson R et al (2014) Physical activity interventions in children and young people with Type 1 diabetes mellitus: a systematic review with meta-analysis. Diabet Med 31:1163–1173. doi:10.1111/dme.12531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Avogaro A, Gnudi L, Valerio A et al (1993) Effects of different plasma glucose concentrations on lipolytic and ketogenic responsiveness to epinephrine in type I (insulin-dependent) diabetic subjects. J Clin Endocrinol Metab 76:845–850. doi:10.1210/jcem.76.4.8473394

    CAS  PubMed  Google Scholar 

  114. da Silva Krause M, de Bittencourt PIH (2008) Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis. Cell Biochem Funct 26:406–433. doi:10.1002/cbf.1470

    Article  CAS  Google Scholar 

  115. Codella R, Luzi L, Inverardi L, Ricordi C (2015) The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity. Eur Rev Med Pharmacol Sci 19:3709–3722

    CAS  PubMed  Google Scholar 

  116. Galassetti P, Riddell MC (2013) Exercise and type 1 diabetes (T1DM). Compr Physiol 3:1309–1336. doi:10.1002/cphy.c110040

    PubMed  Google Scholar 

  117. Pedersen BK, Saltin B (2015) Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sport. doi:10.1111/sms.12581

    Google Scholar 

  118. West DJ, Campbell MD, Gonzalez JT et al (2015) The inflammation, vascular repair and injury responses to exercise in fit males with and without Type 1 diabetes: an observational study. Cardiovasc Diabetol 14:71. doi:10.1186/s12933-015-0235-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Steppel JH, Horton ES (2003) Exercise in the management of type 1 diabetes mellitus. Rev Endocr Metab Dis 4:355–369. doi:10.1023/A:1027302112655

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Michela Adamo for having reviewed the manuscript thoroughly.

Author contributions

All authors were responsible for drafting the manuscript and revising it critically for valuable intellectual content. All authors approved the version to be published.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Codella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. As to the reports on animal experiments, “Principles of laboratory animal care” (NIH publication No. 86-23, revised 1985) were followed, as well as specific national laws.

Informed consent

Informed consent was obtained from all patients for being included in the studies.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codella, R., Terruzzi, I. & Luzi, L. Why should people with type 1 diabetes exercise regularly?. Acta Diabetol 54, 615–630 (2017). https://doi.org/10.1007/s00592-017-0978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-0978-x

Keywords

Navigation