Stem Cell Reviews and Reports

, Volume 11, Issue 2, pp 280–287 | Cite as

Mesenchymal Stem Cells: A Friend or Foe in Immune-Mediated Diseases

  • Marina Gazdic
  • Vladislav VolarevicEmail author
  • Nebojsa Arsenijevic
  • Miodrag Stojkovic


Mesenchymal stem cells (MSCs) are adult, self-renewable, multipotent cells that can be found in almost all postnatal tissues. Because of their capacity for self-renewal and differentiation into tissues of mesodermal origin and due to their immunomodulatory ability, MSCs are used in many preclinical and clinical studies as possible new therapeutic agents for the autoimmune or degenerative diseases treatment. In dependence of inflammatory environment to which they are exposed to, MSCs adopt immunosuppressive or pro-inflammatory phenotype. In the presence of high levels of pro-inflammatory cytokines or through activation of Toll-like receptor (TLR)-3, MSCs adopt an immune-suppressive phenotype and suppress the proliferation, activation and effector function of professional antigen presenting cells (dendritic cells, macrophages, B lymphocytes), T lymphocytes, NK cells, NKT cells, and neutrophils. During the early phase of inflammation, through TLR4 activation and in the presence of low levels of inflammatory cytokines, MSCs adopt a pro-inflammatory phenotype, promote neutrophil and T cell activation and enhance immune response. Here we review the current findings on the immunoregulatory plasticity of MSCs involved in regulation of immune response.


Mesenchymal stem cells Inflammation Therapy Immunosuppression Autoimmunity 



This study was supported by Serbian Ministry of Science (project numbers ON 175069 and ON175103). We highly appreciate and acknowledge the generous assistance of Mr. Ivan Curcic who contributed to the creation of the figures in this article.

Conflicts of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2(2), 83–92.PubMedGoogle Scholar
  2. 2.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.CrossRefPubMedGoogle Scholar
  3. 3.
    Gebler, A., Zabel, O., & Seliger, B. (2012). The immunomodulatory capacity of mesenchymal stem cells. Trends in Molecular Medicine, 18(2), 128–134.CrossRefPubMedGoogle Scholar
  4. 4.
    Volarevic, V., Al-Qahtani, A., Arsenijevic, N., et al. (2010). Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity, 43(4), 255–263.CrossRefPubMedGoogle Scholar
  5. 5.
    Battula, V. L., Evans, K. W., Hollier, B. G., et al. (2010). Epithelial- mesenchymal transitionderived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells, 28(8), 1435–1445.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Takashima, Y., Era, T., Nakao, K., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129(7), 1377–1388.CrossRefPubMedGoogle Scholar
  7. 7.
    Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.CrossRefPubMedGoogle Scholar
  8. 8.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefPubMedGoogle Scholar
  9. 9.
    Volarevic, V., Ljujic, B., Stojkovic, P., Lukic, A., Arsenijevic, N., & Stojkovic, M. (2011). Human stem cell research and regenerative medicine–present and future. British Medical Bulletin, 99, 155–168.CrossRefPubMedGoogle Scholar
  10. 10.
    Volarevic, V., Erceg, S., Bhattacharya, S. S., Stojkovic, P., Horner, P., & Stojkovic, M. (2013). Stem cell based therapy for spinal cord injury. Cell Transplantation, 22(8), 1309–1323.CrossRefPubMedGoogle Scholar
  11. 11.
    Li, W., Ren, G., Huang, Y., et al. (2012). Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death and Differentiation, 19(9), 1505–1513.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Duffy, M. M., Ritter, T., Ceredig, R., & Griffin, M. D. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research and Therapy, 2(4), 34.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Keating, A. (2008). How do mesenchymal stromal sells suppress T cells? Cell Stem Cell, 2(2), 106–108.CrossRefPubMedGoogle Scholar
  14. 14.
    Nauta, A. J., & Fibbe, E. W. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.CrossRefPubMedGoogle Scholar
  15. 15.
    Ren, G., Su, J., Zhang, L., et al. (2009). Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 27(8), 1954–1962.CrossRefPubMedGoogle Scholar
  16. 16.
    Sato, K., Azaki, K., Oh, I., et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109(1), 228–234.CrossRefPubMedGoogle Scholar
  17. 17.
    Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell, 13(4), 392–402.CrossRefPubMedGoogle Scholar
  18. 18.
    Meisel, R., Zibert, A., Laryea, M., Göbel, U., Däubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103(12), 4619–4621.CrossRefPubMedGoogle Scholar
  19. 19.
    Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.CrossRefPubMedGoogle Scholar
  20. 20.
    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.CrossRefPubMedGoogle Scholar
  21. 21.
    Nasef, A., Chapel, A., Mazurier, C., et al. (2007). Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expression, 13(4–5), 217–226.PubMedGoogle Scholar
  22. 22.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.CrossRefPubMedGoogle Scholar
  23. 23.
    Ghannam, S., Bouffi, C., Djouad, F., Jorgensen, C., & Noël, D. (2010). Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Research & Therapy, 1(1), 2.CrossRefGoogle Scholar
  24. 24.
    Chabannes, D., Hill, M., Merieau, E., et al. (2007). A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 110(10), 3691–3694.CrossRefPubMedGoogle Scholar
  25. 25.
    Pae, H., Oh, G. S., Choi, B. M., et al. (2004). Carbon monoxide produced by Heme oxygenase-1 suppresses T cell proliferation by inhibition of IL2 production. Journal of Immunology, 172(8), 4744–4751.CrossRefGoogle Scholar
  26. 26.
    Bright, J. J., Kerr, L. D., & Sriram, S. (1997). TGF-beta inhibits IL-2-induced tyrosine phosphorylation and activation of Jak-1 and Stat 5 in T lymphocytes. Journal of Immunology, 159(1), 175–83.Google Scholar
  27. 27.
    Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. Journal of Immunology, 188(1), 21–28.CrossRefGoogle Scholar
  28. 28.
    Rasmusson, I., Ringden, O., Sundberg, B., & Le Blanc, K. (2005). Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Experimental Cell Research, 305(1), 33–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Nasef, A., Mazurier, C., Bouchet, S., et al. (2008). Leukemia inhibitory factor: role in human mesenchymal stem cells mediated immunosuppression. Cellular Immunology, 253(1–2), 16–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Lepelletier, Y., Lecourt, S., Renand, A., et al. (2010). Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells and Development, 19(7), 1075–1079.CrossRefPubMedGoogle Scholar
  31. 31.
    Sioud, M., Mobergslien, A., Boudabous, A., & Floisand, Y. (2010). Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scandinavian Journal of Immunology, 71(4), 267–274.CrossRefPubMedGoogle Scholar
  32. 32.
    Sivanathan, K. N., Gronthos, S., Rojas-Canales, D., Thierry, B., & Coates, P. T. (2014). Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Reviews and Reports, 10(3), 351–375.CrossRefPubMedGoogle Scholar
  33. 33.
    Bassi, Ê. J., de Almeida, D. C., Moraes-Vieira, P. M., & Câmara, N. O. (2012). Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Reviews and Reports, 8(2), 329–342.CrossRefPubMedGoogle Scholar
  34. 34.
    Duffy, M. M., Pindjakova, J., Hanley, S. A., et al. (2011). Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. European Journal of Immunology, 41(10), 2840–2851.CrossRefPubMedGoogle Scholar
  35. 35.
    Nauta, A., Kruisselbrink, A., Lurvink, E., Willemze, R., & Fibbe, W. (2006). Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. Journal of Immunology, 177(4), 2080–2087.CrossRefGoogle Scholar
  36. 36.
    Ramasamy, R., Fazekasova, H., Lam, E., Soeiro, I., Lombardi, G., & Dazzi, F. (2007). Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 83(1), 71–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang, W., Ge, W., Li, C., et al. (2004). Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells and Development, 13(3), 263–271.CrossRefPubMedGoogle Scholar
  38. 38.
    Jiang, X. X., Zhang, Y., Liu, B., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105(10), 4120–4126.CrossRefPubMedGoogle Scholar
  39. 39.
    Djouad, F., Charbonnier, L. M., Bouffi, C., et al. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25(8), 2025–2032.CrossRefPubMedGoogle Scholar
  40. 40.
    Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113(26), 6576–6583.CrossRefPubMedGoogle Scholar
  41. 41.
    Beyth, S., Borovsky, Z., Mevorach, D., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105(5), 2214–2219.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu, W. H., Liu, J. J., Wu, J., et al. (2013). Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PLoS One, 8(1), e55487.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Ghannam, S., Pène, J., Moquet-Torcy, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology, 185(1), 302–312.CrossRefGoogle Scholar
  44. 44.
    Del Papa, B., Sportoletti, P., Cecchini, D., et al. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. European Journal of Immunology, 43(1), 182–187.CrossRefPubMedGoogle Scholar
  45. 45.
    Maccario, R., Podesta, M., Moretta, A., et al. (2005). Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 90(4), 516–525.PubMedGoogle Scholar
  46. 46.
    Selmani, Z., Naji, A., Zidi, I., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+regulatory T cells. Stem Cells, 26(1), 212–222.CrossRefPubMedGoogle Scholar
  47. 47.
    English, K., Ryan, J. M., Tobin, L., Murphy, M. J., Barry, F. P., & Mahon, B. P. (2009). Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clinical and Experimental Immunology, 156(1), 149–160.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Rasmusson, I., Uhlin, M., Le Blanc, K., & Levitsky, V. (2007). Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. Journal of Leukocyte Biology, 82(4), 887–893.CrossRefPubMedGoogle Scholar
  49. 49.
    Li, M., Sun, X., Kuang, X., Liao, Y., Li, H., & Luo, D. (2014). Mesenchymal stem cells suppress CD8(+) T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2, 3-dioxygenase and transforming growth factor-β. Clinical and Experimental Immunology, 178(3), 516–524.CrossRefPubMedGoogle Scholar
  50. 50.
    Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24(1), 74–85.CrossRefPubMedGoogle Scholar
  51. 51.
    Krampera, M., Cosmi, L., Angeli, R., et al. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398.CrossRefPubMedGoogle Scholar
  52. 52.
    Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327–1333.CrossRefPubMedGoogle Scholar
  53. 53.
    Rasmusson, I., Ringden, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76(8), 1208–1213.CrossRefPubMedGoogle Scholar
  54. 54.
    Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4), 1484–1490.CrossRefPubMedGoogle Scholar
  55. 55.
    Prigione, I., Benvenuto, F., Bocca, P., Battistini, L., Uccelli, A., & Pistoia, V. (2009). Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells, 27(3), 693–702.CrossRefPubMedGoogle Scholar
  56. 56.
    Prockop, D. J. (2013). Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells, 31(10), 2042–2046.CrossRefPubMedGoogle Scholar
  57. 57.
    Eggenhofer, E., & Hoogduijn, M. J. (2012). Mesenchymal stem cell-educated macrophages. Transplantation Research, 1(1), 12.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Melief, S., Schrama, E., Brugman, M., et al. (2013). Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells, 31(9), 1980–1991.CrossRefPubMedGoogle Scholar
  59. 59.
    Németh, K., Leelahavanichkul, A., Yuen, P. S., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Choi, H., Lee, R. H., Bazhanov, N., Oh, J. Y., & Prockop, D. J. (2011). Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis bydecreasing TLR2/NF-κB signaling in resident macrophages. Blood, 118(2), 330–338.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Melief, S., Geutskens, S., Fibbe, W., & Roelofs, H. (2013). Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica, 98(6), 888–895.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    François, M., Romieu-Mourez, R., Li, M., & Galipeau, J. (2012). Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular Therapy The Journal of the American Society of Gene Therapy, 20(1), 187–195.CrossRefPubMedGoogle Scholar
  63. 63.
    Tabera, S., Perez-Simon, J. A., Diez-Campelo, M., et al. (2008). The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica, 93(9), 1301–1309.CrossRefPubMedGoogle Scholar
  64. 64.
    Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107(1), 367–372.CrossRefPubMedGoogle Scholar
  65. 65.
    Rafei, M., Hsieh, J., Fortier, S., et al. (2008). Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood, 112(13), 4991–4998.CrossRefPubMedGoogle Scholar
  66. 66.
    Dazzi, F., & Krampera, M. (2011). Mesenchymal stem cells and autoimmune diseases. Best Practice & Research Clinical Haematology, 24(1), 49–57.CrossRefGoogle Scholar
  67. 67.
    Ren, G., Zhang, L., Zhao, X., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150.CrossRefPubMedGoogle Scholar
  68. 68.
    Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One, 5(4), e10088.CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Raffaghello, L., Bianchi, G., Bertolotto, M., et al. (2008). Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells, 26(1), 151–162.CrossRefPubMedGoogle Scholar
  70. 70.
    Cassatella, M. A., Mosna, F., Micheletti, A., et al. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 29(6), 1001–1011.CrossRefPubMedGoogle Scholar
  71. 71.
    Brandau, S., Jakob, M., Hemeda, H., et al. (2010). Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. Journal of Leukocyte Biology, 88(5), 1005–1015.CrossRefPubMedGoogle Scholar
  72. 72.
    Hall, S. R., Tsoyi, K., Ith, B., et al. (2013). Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells, 31(2), 397–407.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Traggiai, E., Volpi, S., Schena, F., et al. (2008). Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells, 26(2), 562–569.CrossRefPubMedGoogle Scholar
  74. 74.
    Griffin, M., Elliman, S. J., Cahill, E., English, K., Ceredig, R., & Ritter, T. (2013). Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots? Stem Cells, 31(10), 2033–2041.CrossRefPubMedGoogle Scholar
  75. 75.
    Rasmusson, I., Le Blanc, K., Sundberg, B., & Ringdén, O. (2007). Mesenchymal stem cells stimulate antibody secretion in human B cells. Scandinavian Journal of Immunology, 65(4), 336–343.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marina Gazdic
    • 1
  • Vladislav Volarevic
    • 1
    Email author
  • Nebojsa Arsenijevic
    • 1
  • Miodrag Stojkovic
    • 1
    • 2
  1. 1.Center for Molecular Medicine and Stem Cell Research, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  2. 2.Spebo MedicalLeskovacSerbia

Personalised recommendations