Skip to main content

Advertisement

Log in

Human Wharton's Jelly Stem Cells, its Conditioned Medium and Cell-Free Lysate Inhibit the Growth of Human Lymphoma Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton’s jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt’s lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lo Celso, C., Wu, J. W., & Lin, C. P. (2009). In vivo imaging of hematopoietic stem cells and their microenvironment. Journal of Biophotonics, 2, 619–31.

    Article  PubMed  Google Scholar 

  2. Gillette, J. M., & Lippincott-Schwartz, J. (2009). Hematopoietic progenitor cells regulate their niche microenvironment through a novel mechanism of cell-cell communication. Communications Integrative Biology, 2, 305–7.

    Article  CAS  Google Scholar 

  3. Carrancio, S., Blanco, B., Romo, C., Muntion, S., Lopez-Holgado, N., Blanco, J. F., et al. (2011). Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment. PLoS ONE, 6, e26241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Liu, Y., Chen, X. H., Si, Y. J., Li, Z. J., Gao, L., Gao, L., et al. (2012). Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells. PLoS ONE, 7, e31741.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. O'Flaherty, E., Sparrow, R., & Szer, J. (1995). Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplantation, 15, 207–12.

    PubMed  Google Scholar 

  6. Guest, I., & Uetrecht, J. (2000). Drugs toxic to the bone marrow that target the stromal cells. Immunopharmacology, 46, 103–12.

    Article  CAS  PubMed  Google Scholar 

  7. Tauchmanova, L., Serio, B., Del Puente, A., Risitano, A. M., Esposito, A., De Rosa, G., et al. (2002). Long-lasting bone damage detected by dual-energy x-ray absorptiometry, phalangeal osteosonogrammetry, and in vitro growth of marrow stromal cells after allogeneic stem cell transplantation. Journal of Clinical Endocrinology and Metabolism, 87, 5058–65.

    Article  CAS  PubMed  Google Scholar 

  8. Kemp, K., Morse, R., Wexler, S., Cox, C., Mallam, E., Hows, J., et al. (2010). Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Annals of Hematology, 89, 701–13.

    Article  CAS  PubMed  Google Scholar 

  9. Fritz, V., & Jorgensen, C. (2008). Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Current Stem Cell Research & Therapy, 3, 32–42.

    Article  CAS  Google Scholar 

  10. Prockop, D. J. (2009). Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Molecular Therapy, 17, 939–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wong, R. S. (2011). Mesenchymal stem cells: angels or demons? Journal of Biomedicine and Biotechnology, 2011, 459510.

    PubMed Central  PubMed  Google Scholar 

  12. Maestroni, G. J., Hertens, E., & Galli, P. (1999). Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cellular and Molecular Life Sciences, 55, 663–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ohlsson, L. B., Varas, L., Kjellman, C., Edvardsen, K., & Lindvall, M. (2003). Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Experimental and Molecular Pathology, 75, 248–55.

    Article  CAS  PubMed  Google Scholar 

  14. Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. Journal of Experimental Medicine, 203, 1235–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Jodele, S., Chantrain, C. F., Blavier, L., Lutzko, C., Crooks, G. M., Shimada, H., et al. (2005). The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Research, 65, 3200–8.

    CAS  PubMed  Google Scholar 

  16. Zhang, T., Lee, Y. W., Rui, Y. F., Cheng, T. Y., Jiang, X. H., & Li, G. (2013). Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Research Therapy, 4, 70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cardone, A., Tolino, A., Zarcone, R., Borruto Caracciolo, G., & Tartaglia, E. (1997). Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. Panminerva Medica, 39, 174–7.

    CAS  PubMed  Google Scholar 

  18. Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nature Reviews Cancer, 1, 46–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Blankenstein, T. (2005). The role of tumor stroma in the interaction between tumor and immune system. Current Opinion in Immunology, 17, 180–6.

    Article  CAS  PubMed  Google Scholar 

  20. Mishra, P. J., Mishra, P. J., Humeniuk, R., Medina, D. J., Alexe, G., Mesirov, J. P., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68, 4331–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Spaeth, E. L., Dembinski, J. L., Sasser, A. K., Watson, K., Klopp, A., Hall, B., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE, 4, e4992.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton's jelly. Reproductive Biomedicine Online, 15, 708–18.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X. Y., Lan, Y., He, W. Y., Zhang, L., Yao, H. Y., Hou, C. M., et al. (2008). Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–43.

    Article  CAS  PubMed  Google Scholar 

  24. Fong, C. Y., Subramanian, A., Biswas, A., Gauthaman, K., Srikanth, P., Hande, M. P., et al. (2010). Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton's jelly stem cells. Reproductive Biomedicine Online, 21, 391–401.

    Article  PubMed  Google Scholar 

  25. Gauthaman, K., Fong, C. Y., Suganya, C. A., Subramanian, A., Biswas, A., Choolani, M., et al. (2012). Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive Biomedicine Online, 24, 235–46.

    Article  PubMed  Google Scholar 

  26. Wang, Y., Han, Z. B., Ma, J., Zuo, C., Geng, J., Gong, W., et al. (2012). A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells and Development, 21, 1401–8.

    Article  PubMed  Google Scholar 

  27. Chen, H., Zhang, N., Li, T., Guo, J., Wang, Z., Yang, M., et al. (2012). Human umbilical cord Wharton's jelly stem cells: immune property genes assay and effect of transplantation on the immune cells of heart failure patients. Cellular Immunology, 276, 83–90.

    Article  CAS  PubMed  Google Scholar 

  28. Wu, K. H., Sheu, J. N., Wu, H. P., Tsai, C., Sieber, M., Peng, C. T., et al. (2013). Cotransplantation of umbilical cord-derived mesenchymal stem cells promote hematopoietic engraftment in cord blood transplantation: a pilot study. Transplantation, 95, 773–777.

    Article  PubMed  Google Scholar 

  29. Rachakatla, R. S., Marini, F., Weiss, M. L., Tamura, M., & Troyer, D. (2007). Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Therapy, 14, 828–35.

    Article  CAS  PubMed  Google Scholar 

  30. Ayuzawa, R., Doi, C., Rachakatla, R. S., Pyle, M. M., Maurya, D. K., Troyer, D., et al. (2009). Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Letters, 280, 31–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ganta, C., Chiyo, D., Ayuzawa, R., Rachakatla, R., Pyle, M., Andrews, G., et al. (2009). Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Research, 69, 1815–20.

    Article  CAS  PubMed  Google Scholar 

  32. Maurya, D. K., Doi, C., Kawabata, A., Pyle, M. M., King, C., Wu, Z., et al. (2010). Therapy with un-engineered naive rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer, 10, 590.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Sun, B., Yu, K. R., Bhandari, D. R., Jung, J. W., Kang, S. K., & Kang, K. S. (2010). Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Letters, 296, 178–85.

    Article  CAS  PubMed  Google Scholar 

  34. Ma, Y., Hao, X., Zhang, S., & Zhang, J. (2011). The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Research and Treatment, 133(2), 473–85.

    Article  PubMed  Google Scholar 

  35. Chao, K. C., Yang, H. T., & Chen, M. W. (2012). Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. Journal of Cellular and Molecular Medicine, 16, 1803–15.

    Article  CAS  PubMed  Google Scholar 

  36. Gauthaman, K., Fong, C. Y., Cheyyatraivendran, S., Biswas, A., Choolani, M., & Bongso, A. (2012). Human umbilical cord Wharton's jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 113, 2027–39.

    Article  CAS  PubMed  Google Scholar 

  37. Gauthaman, K., Fong, C. Y., Arularasu, S., Subramanian, A., Biswas, A., Choolani, M., et al. (2013). Human Wharton's jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. Journal of Cellular Biochemistry, 114, 366–77.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, J., Han, G., Liu, H., & Qin, C. (2013). Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS ONE, 8, e62844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., & Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS ONE, 8, e61366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Subramanian, A., Shu-Uin, G., Kae-Siang, N., Gauthaman, K., Biswas, A., Choolani, M., et al. (2012). Human umbilical cord Wharton's jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 113, 1886–95.

    Article  CAS  PubMed  Google Scholar 

  41. Nekanti, U., Rao, V. B., Bahirvani, A. G., Jan, M., Totey, S., & Ta, M. (2010). Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Stem Cells and Development, 19, 117–30.

    Article  CAS  PubMed  Google Scholar 

  42. Fong, C. Y., Chak, L. L., Biswas, A., Tan, J. H., Gauthaman, K., Chan, W. K., et al. (2011). Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7, 1–16.

    Article  CAS  PubMed  Google Scholar 

  43. Kawabata, A., Ohta, N., Seiler, G., Pyle, M. M., Ishiguro, S., Zhang, Y. Q., et al. (2013). Naive rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses. Cytotherapy, 15, 586–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Secchiero, P., Zorzet, S., Tripodo, C., Corallini, F., Melloni, E., Caruso, L., et al. (2010). Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin's lymphoma xenografts. PLoS ONE, 5, e11140.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Fonseka, M., Ramasamy, R., Yip, W. K., Tan, B. C., & Seow, H. F. (2012). Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) inhibit the proliferation of K562 (Human erythromyeloblastoid leukemic cell line). Cell Biology Intnl, 36, 793–801.

    Article  CAS  Google Scholar 

  46. Fong, C. Y., Gauthaman, K., Cheyyatraivendran, S., Lin, H. D., Biswas, A., & Bongso, A. (2012). Human umbilical cord Wharton's jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. Journal of Cellular Biochemistry, 113, 658–68.

    Article  CAS  PubMed  Google Scholar 

  47. Yang, H. T., & Chao, K. C. (2013). Foetal defence against cancer: a hypothesis. Journal of Cellular and Molecular Medicine, 17, 1096–8.

    PubMed  Google Scholar 

  48. Potter, J. F., & Schoeneman, M. (1970). Metastasis of maternal cancer to the placenta and fetus. Cancer, 25, 380–8.

    Article  CAS  PubMed  Google Scholar 

  49. Dildy, G. A., 3rd, Moise, K. J., Jr., Carpenter, R. J., Jr., & Klima, T. (1989). Maternal malignancy metastatic to the products of conception: a review. Obstetrical and Gynecological Survey, 44, 535–40.

    Article  PubMed  Google Scholar 

  50. Alexander, A., Samlowski, W. E., Grossman, D., Bruggers, C. S., Harris, R. M., Zone, J. J., et al. (2003). Metastatic melanoma in pregnancy: risk of transplacental metastases in the infant. Journal of Clinical Oncology, 21, 2179–86.

    Article  PubMed  Google Scholar 

  51. Jackisch, C., Louwen, F., Schwenkhagen, A., Karbowski, B., Schmid, K. W., Schneider, H. P., et al. (2003). Lung cancer during pregnancy involving the products of conception and a review of the literature. Archives of Gynecology and Obstetrics, 268, 69–77.

    PubMed  Google Scholar 

  52. Liu, J., & Guo, L. (2006). Intraplacental choriocarcinoma in a term placenta with both maternal and infantile metastases: a case report and review of the literature. Gynecologic Oncology, 103, 1147–51.

    Article  PubMed  Google Scholar 

  53. Henry, F., Bretaudeau, L., Barbieux, K., Meflah, K., & Gregoire, M. (1998). Induction of antigen presentation by macrophages after phagocytosis of tumorapoptotic cells. Research in Immunology, 149, 673–9.

    Article  CAS  PubMed  Google Scholar 

  54. Chan J, Harrison JS, Ponzio NM, Rameshwar P. Mesenchymal stem cells (MSC) exhibit antigen presenting (APC) and phagocytic properties: Implications to bone marrow failure during inflammation. Blood 104: Abstract 4249.

  55. Barker, R. N., Erwig, L. P., Hill, K. S., Devine, A., Pearce, W. P., & Rees, A. J. (2002). Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells. Clinical and Experimental Immunology, 127, 220–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Weiss, M. L., Anderson, C., Medicetty, S., Seshareddy, K. B., Weiss, R. J., & Vanderwerff, I. (2008). Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells, 26, 2865–2874.

    Article  CAS  PubMed  Google Scholar 

  57. Bewick, M., Coutie, W., & Tudhope, G. R. (1987). Superoxide dismutase, glutathione peroxidase and catalase in the red cells of patients with malignant lymphoma. British Journal of Haematology, 65, 347–50.

    Article  CAS  PubMed  Google Scholar 

  58. Oberley, L. W. (2001). Anticancer therapy by overexpression of superoxide dismutase. Antioxidants and Redox Signaling, 3, 461–72.

    Article  CAS  PubMed  Google Scholar 

  59. Bakan, N., Taysi, S., Yilmaz, O., Bakan, E., Kuskay, S., Uzun, N., et al. (2003). Glutathione peroxidase, glutathione reductase, Cu-Zn superoxide dismutase activities, glutathione, nitric oxide, and malondialdehyde concentrations in serum of patients with chronic lymphocytic leukemia. Clinica Chimica Acta, 338, 143–9.

    Article  CAS  Google Scholar 

  60. Davicino, R., Manuele, M. G., Turner, S., Ferraro, G., & Anesini, C. (2010). Antiproliferative activity of Larrea divaricata Cav. on lymphoma cell line: participation of hydrogen peroxide in its action. Cancer Investigation, 28, 13–22.

    Article  CAS  PubMed  Google Scholar 

  61. Zhong, W., Oberley, L. W., Oberley, T. D., & St Clair, D. K. (1997). Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene, 14, 481–90.

    Article  CAS  PubMed  Google Scholar 

  62. Zhong, W., Oberley, L. W., Oberley, T. D., Yan, T., Domann, F. E., & St Clair, D. K. (1996). Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth and Differentiation, 7, 1175–86.

    CAS  PubMed  Google Scholar 

  63. Tome, M. E., Jaramillo, M. C., & Briehl, M. M. (2011). Hydrogen peroxide signaling is required for glucocorticoid-induced apoptosis in lymphoma cells. Free Radical Biology and Medicine, 51, 2048–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Tome, M. E., Lee, K., Jaramillo, M. C., & Briehl, M. M. (2012). Mitochondria are the primary source of the H(2)O(2) signal for glucocorticoid-induced apoptosis of lymphoma cells. Experiment Therapeutica Medicine, 4, 237–242.

    CAS  Google Scholar 

  65. Vogelzang NJ. 1991. Nephrotoxicity from chemotherapy: prevention and management. Oncology (Williston Park) 5:97-102, 105; disc 105, 109-11.

  66. Takimoto, C. H., Lu, Z. H., Zhang, R., Liang, M. D., Larson, L. V., Cantilena, L. R., Jr., et al. (1996). Severe neurotoxicity following 5-fluorouracil-based chemotherapy in a patient with dihydropyrimidine dehydrogenase deficiency. Clinical Cancer Research, 2, 477–81.

    CAS  PubMed  Google Scholar 

  67. Takemura, G., & Fujiwara, H. (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Progress in Cardiovascular Diseases, 49, 330–52.

    Article  CAS  PubMed  Google Scholar 

  68. Di, G. H., Jiang, S., Li, F. Q., Sun, J. Z., Wu, C. T., Hu, X., et al. (2012). Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 14, 412–22.

    Article  CAS  PubMed  Google Scholar 

  69. Chamberlin, W., Barone, J., Kedo, A., & Fried, W. (1974). Lack of recovery of murine hematopoietic stromal cells after irradiation-induced damage. Blood, 44, 385–92.

    CAS  PubMed  Google Scholar 

  70. Wolf, N. S. (1982). Dissecting the hematopoietic microenvironment. V: limitations of repair following damage to the hematopoietic support stroma. Experimental Hematology, 10, 108–18.

    CAS  PubMed  Google Scholar 

  71. Gibson, L. F., Fortney, J., Landreth, K. S., Piktel, D., Ericson, S. G., & Lynch, J. P. (1997). Disruption of bone marrow stromal cell function by etoposide. Biology of Blood and Marrow Transplantation, 3, 122–32.

    CAS  PubMed  Google Scholar 

  72. Galotto, M., Berisso, G., Delfino, L., Podesta, M., Ottaggio, L., Dallorso, S., et al. (1999). Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Experimental Hematology, 27, 1460–6.

    Article  CAS  PubMed  Google Scholar 

  73. Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation, 13, 1477–86.

    Article  PubMed  Google Scholar 

  74. Le Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., et al. (2007). Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia, 21, 1733–8.

    Article  PubMed  Google Scholar 

  75. Lee, S. H., Lee, M. W., Yoo, K. H., Kim, D. S., Son, M. H., Sung, K. W., et al. (2013). Co-transplantation of third-party umbilical cord blood-derived MSCs promotes engraftment in children undergoing unrelated umbilical cord blood transplantation. Bone Marrow Transplantation, 48, 1040–5.

    Article  CAS  PubMed  Google Scholar 

  76. Fan, C. G., Zhang, Q., & Zhou, J. (2011). Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Reviews and Reports, 7, 195–207.

    Article  PubMed  Google Scholar 

  77. Chao, Y. H., Tsai, C., Peng, C. T., Wu, H. P., Chan, C. K., Weng, T., et al. (2011). Cotransplantation of umbilical cord MSCs to enhance engraftment of hematopoietic stem cells in patients with severe aplastic anemia. Bone Marrow Transplantation, 46, 1391–2.

    Article  PubMed  Google Scholar 

  78. Hu, J., Yu, X., Wang, Z., Wang, F., Wang, L., Gao, H., et al. (2013). Long term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 60, 347–57.

    Article  CAS  PubMed  Google Scholar 

  79. Dalous, J., Larghero, J., & Baud, O. (2012). Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives. Pediatric Research, 71, 482–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the National Medical Research Council (NMRC), Singapore for the grant support (R-174-000-131-213) to carry out this study.

Conflict of Interest

All authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariff Bongso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H.D., Fong, C.Y., Biswas, A. et al. Human Wharton's Jelly Stem Cells, its Conditioned Medium and Cell-Free Lysate Inhibit the Growth of Human Lymphoma Cells. Stem Cell Rev and Rep 10, 573–586 (2014). https://doi.org/10.1007/s12015-014-9514-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9514-3

Keywords

Navigation