Skip to main content

Advertisement

Log in

Therapeutic Application of Adipose Derived Stem Cells in Acute Myocardial Infarction: Lessons from Animal Models

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The majority of patients survive an acute myocardial infarction (AMI). Their outcome is negatively influenced by post-AMI events, such as loss of viable cardiomyocytes due to a post-AMI inflammatory response, eventually resulting in heart failure and/or death. Recent pre-clinical animal studies indicate that mesenchymal stem cells derived from adipose tissue (ASC) are new promising candidates that may facilitate cardiovascular regeneration in the infarcted myocardium. In this review we have compared all animal studies in which ASC were used as a therapy post-AMI and have focused on aspects that might be important for future successful clinical application of ASC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASC:

Adipose derived stem cell

AMI:

Acute myocardial infarction

IV:

Intravenous injection

IC:

Intracoronary injection

IM:

Intramyocardial injection

MSC:

Mesenchymal stem cell

BMSC:

Bone marrow derived mesenchymal stem cell

SVF:

Stromal vascular fraction

LVEF:

Left ventricular ejection fraction

I/R:

Ischemia/reperfusion

References

  1. Shah, V. K., & Shalia, K. K. (2011). Stem cell therapy in acute myocardial infarction: a pot of gold or Pandora’s Box. Stem Cells International, 2011, 536758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kuraitis, D., Ruel, M., & Suuronen, E. J. (2011). Mesenchymal stem cells for cardiovascular regeneration. Cardiovascular Drugs and Therapy, 25(4), 349–362.

    Article  PubMed  Google Scholar 

  3. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., et al. (2012). Executive summary: heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation, 125(1), 188–197.

    PubMed  Google Scholar 

  4. Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81(4), 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  5. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2(2), 83–92.

    CAS  PubMed  Google Scholar 

  6. Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Naaijkens, B. A., Niessen, H. W., Prins, H. J., et al. (2012). Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications. Cell and Tissue Research, 348(1), 119–130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Boyle, A. J., McNiece, I. K., & Hare, J. M. (2010). Mesenchymal stem cell therapy for cardiac repair. Methods in Molecular Biology, 660, 65–84.

    Article  CAS  PubMed  Google Scholar 

  9. Oswald, J., Boxberger, S., Jorgensen, B., et al. (2004). Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 22(3), 377–384.

    Article  PubMed  Google Scholar 

  10. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.

    Article  CAS  PubMed  Google Scholar 

  11. Psaltis, P. J., Zannettino, A. C., Worthley, S. G., & Gronthos, S. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26(9), 2201–2210.

    Article  PubMed  Google Scholar 

  12. Katz, A. J., Tholpady, A., Tholpady, S. S., Shang, H., & Ogle, R. C. (2005). Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells, 23(3), 412–423.

    Article  CAS  PubMed  Google Scholar 

  13. Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T., & Kaneda, Y. (2006). Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. Journal of Atherosclerosis and Thrombosis, 13(2), 77–81.

    Article  PubMed  Google Scholar 

  14. Varma, M. J., Breuls, R. G., Schouten, T. E., et al. (2007). Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells and Development, 16(1), 91–104.

    Article  PubMed  Google Scholar 

  15. Rasmussen, J. G., Frobert, O., Holst-Hansen, C., et al. (2012). Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplantation (Epub ahead of print).

  16. Paul, A., Srivastava, S., Chen, G., Shum-Tim, D., & Prakash, S. (2013). Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models: comparison with bone marrow stem cells. Cell Biochemistry and Biophysics, 67(2), 263–273.

    Article  CAS  PubMed  Google Scholar 

  17. Yamada, Y., Wang, X. D., Yokoyama, S., Fukuda, N., & Takakura, N. (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communications, 342(2), 662–670.

    Article  CAS  PubMed  Google Scholar 

  18. Bayes-Genis, A., Soler-Botija, C., Farre, J., et al. (2010). Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 49(5), 771–780.

    Article  CAS  PubMed  Google Scholar 

  19. Bai, X., Yan, Y., Song, Y. H., et al. (2010). Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. European Heart Journal, 31(4), 489–501.

    Article  CAS  PubMed  Google Scholar 

  20. Gaebel, R., Furlani, D., Sorg, H., et al. (2011). Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One, 6(2), e15652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li, T. S., Cheng, K., Malliaras, K., et al. (2012). Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. Journal of the American College of Cardiology, 59(10), 942–953.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kim, S. W., Lee, D. W., Yu, L. H., et al. (2012). Mesenchymal stem cells overexpressing GCP-2 improve cardiac function through enhanced angiogenic properties in a myocardial infarction model. Cardiovascular Research, 95(4), 495–506.

    Article  CAS  PubMed  Google Scholar 

  23. Cai, L., Johnstone, B. H., Cook, T. G., et al. (2009). IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells, 27(1), 230–237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ii, M., Horii, M., Yokoyama, A., et al. (2011). Synergistic effect of adipose-derived stem cell therapy and bone marrow progenitor recruitment in ischemic heart. Laboratory Investigation, 91(4), 539–552.

    Article  CAS  PubMed  Google Scholar 

  25. Hong, S. J., Kihlken, J., Choi, S. C., March, K. L., & Lim, D. S. (2013). Intramyocardial transplantation of human adipose-derived stromal cell and endothelial progenitor cell mixture was not superior to individual cell type transplantation in improving left ventricular function in rats with myocardial infarction. International Journal of Cardiology, 164(2), 205–211.

    Article  PubMed  Google Scholar 

  26. Beitnes, J. O., Oie, E., Shahdadfar, A., et al. (2012). Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplantation, 21(8), 1697–1709.

    Article  Google Scholar 

  27. van der Bogt, K. E., Schrepfer, S., Yu, J., et al. (2009). Comparison of transplantation of adipose tissue- and bone marrow-derived mesenchymal stem cells in the infarcted heart. Transplantation, 87(5), 642–652.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Leobon, B., Roncalli, J., Joffre, C., et al. (2009). Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovascular Research, 83(4), 757–767.

    Article  CAS  PubMed  Google Scholar 

  29. Yu, L. H., Kim, M. H., Park, T. H., et al. (2010). Improvement of cardiac function and remodeling by transplanting adipose tissue-derived stromal cells into a mouse model of acute myocardial infarction. International Journal of Cardiology, 139(2), 166–172.

    Article  PubMed  Google Scholar 

  30. Tokunaga, M., Liu, M. L., Nagai, T., et al. (2010). Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. Journal of Molecular and Cellular Cardiology, 49(6), 972–983.

    Article  CAS  PubMed  Google Scholar 

  31. Hoke, N. N., Salloum, F. N., Kass, D. A., Das, A., & Kukreja, R. C. (2012). Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells, 30(2), 326–335.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Z., Li, S., Cui, M., et al. (2013). Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Research in Cardiology, 108(2), 333–0333.

    Article  PubMed  Google Scholar 

  33. Li, B., Zeng, Q., Wang, H., et al. (2007). Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coronary Artery Disease, 18(3), 221–227.

    Article  PubMed  Google Scholar 

  34. Schenke-Layland, K., Strem, B. M., Jordan, M. C., et al. (2009). Adipose tissue-derived cells improve cardiac function following myocardial infarction. Journal of Surgical Research, 153(2), 217–223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shi, C. Z., Zhang, X. P., Lv, Z. W., et al. (2012). Adipose tissue-derived stem cells embedded with eNOS restore cardiac function in acute myocardial infarction model. International Journal of Cardiology, 154(1), 2–8.

    Article  PubMed  Google Scholar 

  36. Paul, A., Nayan, M., Khan, A. A., Shum-Tim, D., & Prakash, S. (2012). Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. International Journal of Nanomedicine, 7, 663–682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Liu, Z., Wang, H., Wang, Y., et al. (2012). The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials, 33(11), 3093–3106.

    Article  CAS  PubMed  Google Scholar 

  38. Carvalho, J. L., Braga, V. B., Melo, M. B., et al. (2013). Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. Journal of Cellular and Molecular Medicine, 17(5), 617–625.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Danoviz, M. E., Nakamuta, J. S., Marques, F. L., et al. (2010). Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention. PLoS One, 5(8), e12077.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Zhu, X. Y., Zhang, X. Z., Xu, L., Zhong, X. Y., Ding, Q., & Chen, Y. X. (2009). Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochemical and Biophysical Research Communications, 379(4), 1084–1090.

    Article  CAS  PubMed  Google Scholar 

  41. van Dijk, A., Naaijkens, B. A., Jurgens, W. J. F. M., et al. (2011). Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application. Stem Cell Research, 7(3), 219–229.

    Article  PubMed  Google Scholar 

  42. Wang, L., Deng, J., Tian, W., et al. (2009). Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 297(3), H1020–H1031.

    Article  CAS  PubMed  Google Scholar 

  43. Hwangbo, S., Kim, J., Her, S., Cho, H., & Lee, J. (2010). Therapeutic potential of human adipose stem cells in a rat myocardial infarction model. Yonsei Medical Journal, 51(1), 69–76.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhang, X., Wang, H., Ma, X., et al. (2010). Preservation of the cardiac function in infarcted rat hearts by the transplantation of adipose-derived stem cells with injectable fibrin scaffolds. Experimental Biology and Medicine (Maywood, N.J.), 235(12), 1505–1515.

    Article  CAS  Google Scholar 

  45. Berardi, G. R., Rebelatto, C. K., Tavares, H. F., et al. (2011). Transplantation of SNAP-treated adipose tissue-derived stem cells improves cardiac function and induces neovascularization after myocardium infarct in rats. Experimental and Molecular Pathology, 90(2), 149–156.

    Article  CAS  PubMed  Google Scholar 

  46. Karpov, A. A., Uspenskaya, Y. K., Minasian, S. M., et al. (2013). The effect of bone marrow- and adipose tissue-derived mesenchymal stem cell transplantation on myocardial remodelling in the rat model of ischaemic heart failure. International Journal of Experimental Pathology, 94(3), 169–177.

    CAS  PubMed  Google Scholar 

  47. Yang, J. J., Yang, X., Liu, Z. Q., et al. (2012). Transplantation of adipose tissue-derived stem cells overexpressing heme oxygenase-1 improves functions and remodeling of infarcted myocardium in rabbits. Tohoku Journal of Experimental Medicine, 226(3), 231–241.

    Article  CAS  PubMed  Google Scholar 

  48. Alt, E., Pinkernell, K., Scharlau, M., et al. (2010). Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. International Journal of Cardiology, 144(1), 26–35.

    Article  PubMed  Google Scholar 

  49. Valina, C., Pinkernell, K., Song, Y. H., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28(21), 2667–2677.

    Article  PubMed  Google Scholar 

  50. De, S. R., Balducci, L., Blasi, A., et al. (2010). Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism. Experimental Cell Research, 316(11), 1804–1815.

    Article  Google Scholar 

  51. Rigol, M., Solanes, N., Farre, J., et al. (2010). Effects of adipose tissue-derived stem cell therapy after myocardial infarction: impact of the route of administration. Journal of Cardiac Failure, 16(4), 357–366.

    Article  CAS  PubMed  Google Scholar 

  52. Mazo, M., Hernandez, S., Gavira, J. J., et al. (2012). Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical swine model of myocardial infarction. Cell Transplantation, 21(12), 2723–2733.

    Article  PubMed  Google Scholar 

  53. Bosma, M. J., & Carroll, A. M. (1991). The SCID mouse mutant: definition, characterization, and potential uses. Annual Review of Immunology, 9, 323–350.

    Article  CAS  PubMed  Google Scholar 

  54. Cook, J. L., Ikle, D. N., & Routes, B. A. (1995). Natural killer cell ontogeny in the athymic rat. Relationship between functional maturation and acquired resistance to E1A oncogene-expressing sarcoma cells. Journal of Immunology, 155(12), 5512–5518.

    CAS  Google Scholar 

  55. Bodi, V., Sanchis, J., Nunez, J., et al. (2008). Uncontrolled immune response in acute myocardial infarction: unraveling the thread. American Heart Journal, 156(6), 1065–1073.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Q. D., & Sjoquist, P. O. (2006). Myocardial regeneration with stem cells: pharmacological possibilities for efficacy enhancement. Pharmacological Research, 53(4), 331–340.

    Article  CAS  PubMed  Google Scholar 

  57. Malek, S., Kaplan, E., Wang, J. F., et al. (2006). Successful implantation of intravenously administered stem cells correlates with severity of inflammation in murine myocarditis. Pflügers Archiv, 452(3), 268–275.

    Article  CAS  PubMed  Google Scholar 

  58. Zaragoza, C., Gomez-Guerrero, C., Martin-Ventura, J. L., et al. (2011). Animal models of cardiovascular diseases. Journal of Biomedicine and Biotechnology, 2011, 497841.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Jennings, R., Sommers, H., Smyth, G., Flack, H., & Linn, H. (1960). Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Archives of Pathology, 70, 68–78.

    CAS  PubMed  Google Scholar 

  60. Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357(11), 1121–1135.

    Article  CAS  PubMed  Google Scholar 

  61. Krijnen, P. A., Meischl, C., Nijmeijer, R., Visser, C. A., Hack, C. E., & Niessen, H. W. (2006). Inhibition of sPLA2-IIA, C-reactive protein or complement: new therapy for patients with acute myocardial infarction? Cardiovascular & Hematological Disorders Drug Targets, 6(2), 113–123.

    Article  CAS  Google Scholar 

  62. Shim, W. S., Tan, G., Gu, Y., et al. (2010). Dose-dependent systolic contribution of differentiated stem cells in post-infarct ventricular function. Journal of Heart and Lung Transplantation, 29(12), 1415–1426.

    Article  PubMed  Google Scholar 

  63. Wolf, D., Reinhard, A., Seckinger, A., Katus, H. A., Kuecherer, H., & Hansen, A. (2009). Dose-dependent effects of intravenous allogeneic mesenchymal stem cells in the infarcted porcine heart. Stem Cells and Development, 18(2), 321–329.

    Article  CAS  PubMed  Google Scholar 

  64. Wei, H., Ooi, T. H., Tan, G., et al. (2010). Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy: an introduction for clinical researchers. Heart Failure Reviews, 15(1), 1–14.

    Article  PubMed  Google Scholar 

  65. Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochemistry and Function, 26(6), 664–675.

    Article  CAS  PubMed  Google Scholar 

  66. Fischer, U. M., Harting, M. T., Jimenez, F., et al. (2009). Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells and Development, 18(5), 683–692.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Houtgraaf, J. H., den Dekker, W. K., van Dalen, B. M., et al. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59(5), 539–540.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Naaijkens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naaijkens, B.A., van Dijk, A., Kamp, O. et al. Therapeutic Application of Adipose Derived Stem Cells in Acute Myocardial Infarction: Lessons from Animal Models. Stem Cell Rev and Rep 10, 389–398 (2014). https://doi.org/10.1007/s12015-014-9502-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9502-7

Keywords

Navigation