Skip to main content
Log in

Electron Paramagnetic Resonance Imaging of Melanin in Honey Bee

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Honey bees play a crucial role in the nature by pollinating wild flowers. Over the past years, there has been an increasing concern regarding the honey bee colony decline. Pesticides or environmental effects targeting the biochemistry of insect chitin and cuticle coating may be in part responsible for honey bee pathologies. We here propose the use of electron paramagnetic resonance imaging (EPRI) as a tool to image the melanin–chitin complexes as part of the exoskeleton of the honey bee. EPRI at 9.65 GHz was applied on intact freeze-dried bees. The imaging data were collected on the melanin peak. High-resolution images revealed that this compound is extensively distributed in the periphery of the animal, data consistent with the localization in the cuticle of the bee. While EPR of melanin has been so far explored in the context of melanoma characterization, it may offer new opportunities in research on honey bees and other insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rhodes, C. J. (2018). Pollinator decline - an ecological calamity in the making? Science Progress, 101, 121–160.

    Article  Google Scholar 

  2. Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B., & Lihoreau, M. (2017). Why bees are so vulnerable to environmental stressors. Trends in Ecology & Evolution, 32, 268–278.

    Article  Google Scholar 

  3. Butzloff, P. R. (2011). Micro-CT imaging of denaturated chitin by silver to explore honey bee and insect pathologies. PLoS ONE, 6, e27448.

    Article  CAS  Google Scholar 

  4. Cohen, E. (1993). Chitin synthesis and degradation as targets for pesticide action. Insect Biochemistry and Physiology, 22, 245–261.

    Article  CAS  Google Scholar 

  5. Keller, A., Brandel, A., Becker, M. C., Balles, R., Abdelmohsen, U. R., Ankenbrand, M. J., & Sickel, W. (2018). Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome, 6, 229.

    Article  Google Scholar 

  6. Kayser, H., & Palivan, C. G. (2006). Stable free radicals in insect cuticles: electron spin resonance spectroscopy reveals differences between melanization and sclerotization. Archives of Biochemistry and Biophysics, 453, 179–187.

    Article  CAS  Google Scholar 

  7. Kurchenko, V. P., Kukulyanskaya, T. A., Azarko, I. I., Zueva, O. Yu, Khizmatullin, R. G., & Varlamov, V. P. (2006). Physicochemical properties of chitin-melanin and melanoprotein complexes from bee corpses. Appllied Biochemistry and Microbes, 42, 331–334.

    Article  CAS  Google Scholar 

  8. Ito, S., & Wakamatsu, K. (2008). Chemistry of mixed melanogenesis–pivotal roles of dopaquinone. Photochemistry and Photobiology, 84, 582–592.

    Article  CAS  Google Scholar 

  9. Commoner, B., Townsend, J., & Pake, G. E. (1954). Free radicals in biological materials. Nature, 174, 689–691.

    Article  CAS  Google Scholar 

  10. Sealy, R. C., Hyde, J. S., Felix, C. C., Menon, I. A., & Prota, G. (1982). Eumelanins and pheomelanins: characterization by electron spin resonance spectroscopy. Science, 217, 545–547.

    Article  CAS  Google Scholar 

  11. Saifutdinov, R. G., Larina, L. I., Vakulskaya, T. I., & Voronkov, M. G. (2001). Paramagnetic centers in the human biological media. In R. G. Saifutdinov, et al. (Eds), Electron paramagnetic resonance in biochemistry and medicine (pp. 21–73). New York: Kluwer Academic/Plenum Publishers.

  12. Enochs, W. S., Nilges, M. J., & Swartz, H. M. (1993). A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Research, 6, 91–99.

    Article  CAS  Google Scholar 

  13. Sarna, T., & Swartz, H. M. (1978). Identification and characterization of melanin in tissues and body fluids. Folia Histochemica et Cytochemica, 16, 275–286.

    CAS  PubMed  Google Scholar 

  14. Barek, H., Veraksa, A., & Sugumaran, M. (2018). Drosophila melanogaster has the enzymatic machinery to make the melanic component of neuromelanin. Pigment Cell & Melanoma Research, 31, 683–692.

    Article  CAS  Google Scholar 

  15. Vanea, E., Charlier, N., Dewever, J., Dinguizli, M., Feron, O., Baurain, J. F., & Gallez, B. (2008). Molecular electron paramagnetic resonance imaging of melanin in melanomas: a proof-of-concept. NMR Biomedicine, 21, 296–300.

    Article  CAS  Google Scholar 

  16. Plonka, P. M. (2009). Electron paramagnetic resonance as a unique tool for skin and hair research. Experimental Dermatology, 18, 472–484.

    Article  CAS  Google Scholar 

  17. Godechal, Q., & Gallez, B. (2011). The contribution of electron paramagnetic resonance to melanoma research. Journal of Skin Cancer, 2011, 273280.

    Article  Google Scholar 

  18. Godechal, Q., Leveque, P., Marot, L., Baurain, J. F., & Gallez, B. (2012). Optimization of electron paramagnetic resonance imaging for visualization of human skin melanoma in various stages of invasion. Experimental Dermatology, 21, 341–346.

    Article  Google Scholar 

  19. Godechal, Q., Ghanem, G. E., Cook, M. G., & Gallez, B. (2013). Electron paramagnetic resonance spectrometry and imaging in melanomas: comparison between pigmented and nonpigmented human malignant melanomas. Molecular Imaging, 12, 218–223.

    Article  CAS  Google Scholar 

  20. Nakagawa, K., Minakawa, S., Sawamura, D., & Hara, H. (2017). Characterization of melanin radicals in paraffin-embedded malignant melanoma and nevus pigmentosus using X-band EPR and EPR imaging. Analytical Sciences, 33, 1357–1361.

    Article  CAS  Google Scholar 

  21. Nakagawa, K., Minakawa, S., Itabashi, C., & Sawamura, D. (2019). Investigation of paraffin-embedded basal cell carcinoma using electron paramagnetic resonance. Analytical Sciences, 35, 265–269.

    Article  CAS  Google Scholar 

  22. Desmet, C. M., Danhier, P., Acciardo, S., Levêque, P., & Gallez, B. (2019). Towards in vivo melanin radicals detection in melanomas by electron paramagnetic resonance (EPR) spectroscopy: a proof-of-concept study. Free Radical Research, 53, 405–410.

    Article  CAS  Google Scholar 

  23. Hyodo, F., Naganuma, T., Eto, H., Murata, M., Utsumi, H., & Matsuo, M. (2019). In vivo melanoma imaging based on dynamic nuclear polarization enhancement in melanin pigment of living mice using in vivo dynamic nuclear polarization magnetic resonance imaging. Free Radical Biology and Medicine, 134, 99–105.

    Article  CAS  Google Scholar 

  24. Plotkin, M., Hod, I., Zaban, A., Boden, S. A., Bagnall, D. M., Galushko, D., & Bergman, D. J. (2010). Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis). Naturwissenschaften, 97, 1067–1076.

    Article  CAS  Google Scholar 

  25. D’Ischia, M., Napolitano, A., Pezzella, A., Meredith, P., & Sarna, T. (2009). Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angewandte Chemie International Edition, 48, 3914–3921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gallez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented as a poster during the XIth International Workshop on EPR in Biology and Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlier, N., Desoil, M., Gossuin, Y. et al. Electron Paramagnetic Resonance Imaging of Melanin in Honey Bee. Cell Biochem Biophys 78, 123–126 (2020). https://doi.org/10.1007/s12013-020-00903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00903-8

Keywords

Navigation