Advertisement

Influence of Dietary Copper Methionine Concentrations on Growth Performance, Digestibility of Nutrients, Serum Lipid Profiles, and Immune Defenses in Broilers

  • Xuezhuang Wu
  • Sifa Dai
  • Jinling Hua
  • Hong Hu
  • Shujuan Wang
  • Aiyou Wen
Article

Abstract

A 42-day experiment was conducted to evaluate the influence of dietary copper (Cu) concentrations on growth performance, nutrient digestibility, and serum parameters in broilers aged from 1 to 42 days. Five hundred forty 1-day-old broilers were randomly assigned into 1 of the following 6 dietary treatments: (1) control (basal diet without supplemental Cu), (2) 15 mg/kg supplemental Cu (Cu15), (3) 30 mg/kg supplemental Cu (Cu30), (4) 60 mg/kg supplemental Cu (Cu60), (5) 120 mg/kg supplemental Cu (Cu120), and (6) 240 mg/kg supplemental Cu (Cu240), Cu as copper methionine. A 4-day metabolism trial was conducted during the last week of the experiment feeding. The results showed that dietary Cu supplementation increased the average daily gain and the average daily feed intake (P < 0.01). The feed gain ratio, however, was not affected by dietary Cu (P > 0.10). Additionally, dietary Cu supplementation increased the digestibility of fat and energy (P < 0.05). The concentration of serum cholesterol, triglycerides, and high-density lipoprotein cholesterol decreased with dietary Cu supplementation (P < 0.05). The activities of serum Cu-Zn superoxide dismutase (P < 0.05), glutathione peroxidase (P < 0.05), and ceruloplasmin (P = 0.09), on the contrary, were increased by Cu addition. For immune indexes, dietary Cu supplementation increased serum IgA and IgM (P < 0.05). In addition, the activities of serum ALT increased with increasing dietary Cu supplementation (P < 0.05). In conclusion, our data suggest that Cu supplementation can increase fat digestibility and promote growth. Additionally, dietary Cu supplementation can reduce serum cholesterol and enhance antioxidant capacity in broilers.

Keywords

Broilers Growth performance Nutrient digestibility Antioxidant defenses Copper Lipid profiles 

Notes

Funding Information

The funding for this study was from Natural Science Foundation of Anhui Province of China (1708085QC74), High-level Talents Introduction Project of Anhui Institute of Science and Technology (DKYJ201701), Chuzhou Science and Technology Project (2018ZN014), and the fund of National Natural Science Foundation in Higher Education of Anhu, China (KJ2018A0535).

References

  1. 1.
    Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol 257(6):869–881.  https://doi.org/10.1007/s00415-010-5511-x CrossRefGoogle Scholar
  2. 2.
    Wang C, Wang MQ, Ye SS, Tao WJ, Du YJ (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci 90(10):2223–2228.  https://doi.org/10.3382/ps.2011-01511 CrossRefGoogle Scholar
  3. 3.
    Council NR (1994) Nutrient requirements of poultry. 9th ed edn. National Academies Press, Washington, DCGoogle Scholar
  4. 4.
    Feldpausch JA, Amachawadi RG, Tokach MD, Scott HM, Nagaraja TG, Dritz SS, Goodband RD, Woodworth JC, DeRouchey JM (2016) Effects of dietary copper, zinc, and ractopamine hydrochloride on finishing pig growth performance, carcass characteristics, and antimicrobial susceptibility of enteric bacteria. J Anim Sci 94(8):3278–3293.  https://doi.org/10.2527/jas.2016-0340 CrossRefGoogle Scholar
  5. 5.
    Rochell SJ, Usry JL, Parr TM, Parsons CM, Dilger RN (2017) Effects of dietary copper and amino acid density on growth performance, apparent metabolizable energy, and nutrient digestibility in Eimeria acervulina-challenged broilers. Poult Sci 96(3):602–610.  https://doi.org/10.3382/ps/pew276 CrossRefGoogle Scholar
  6. 6.
    Wu X, Liu Z, Guo J, Wan C, Zhang T, Cui H, Yang F, Gao X (2015) Influence of dietary zinc and copper on apparent mineral retention and serum biochemical indicators in young male mink (Mustela vison). Biol Trace Elem Res 165(1):59–66.  https://doi.org/10.1007/s12011-014-0220-4 CrossRefGoogle Scholar
  7. 7.
    Ognik K, Sembratowicz I, Cholewińska E, Jankowski J, Kozłowski K, Juśkiewicz J, Zduńczyk Z (2018) The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim Sci J 89(3):579–588.  https://doi.org/10.1111/asj.12956 CrossRefGoogle Scholar
  8. 8.
    Chenchen XU, Wang B, Wenhua GE, Zhang M, Yue B, Shi X (2013) Effects of copper on growth performance, slaughter performance, nutrient availability and serum hormone content of Wulong Geese aged 5 to 16 weeks. Chin J Animal Nutr 25(9):1989–1997.  https://doi.org/10.3969/j.issn.1006-267x.2013.09.010 CrossRefGoogle Scholar
  9. 9.
    Liu Z, Wu X, Zhang T, Cui H, Guo J, Guo Q, Gao X, Yang F (2016) Influence of dietary copper concentrations on growth performance, serum lipid profiles, antioxidant defenses, and fur quality in growing–furring male blue foxes (Vulpes lagopus)1. J Anim Sci 94(3):1095–1104.  https://doi.org/10.2527/jas.2015-9960 CrossRefGoogle Scholar
  10. 10.
    Wu X, Liu Z, Zhang T, Yang Y, Yang F, Gao X (2014) Effects of dietary copper on nutrient digestibility, tissular copper deposition and fur quality of growing-furring mink (Mustela vison). Biol Trace Elem Res 158(2):166–175.  https://doi.org/10.1007/s12011-014-9933-7 CrossRefGoogle Scholar
  11. 11.
    AOAC (2005) Official methods of analysis. 18th ed edn. Assoc. Anal. Chem., Arlington, VAGoogle Scholar
  12. 12.
    SAS (2002) Statistical Analysis System. 8.2 edn edn., Institute, Cary, NCGoogle Scholar
  13. 13.
    Shahzad MN, Javed MT, Shabir S, Irfan M, Hussain R (2012) Effects of feeding urea and copper sulphate in different combinations on live body weight, carcass weight, percent weight to body weight of different organs and histopathological tissue changes in broilers. Exp Toxicol Pathol 64(3):141–147.  https://doi.org/10.1016/j.etp.2010.07.009 CrossRefGoogle Scholar
  14. 14.
    Gheisari AA, Sanei A, Samie A, Gheisari MM, Toghyani M (2011) Effect of diets supplemented with different levels of manganese, zinc, and copper from their organic or inorganic sources on egg production and quality characteristics in laying hens. Biol Trace Elem Res 142(3):557–571.  https://doi.org/10.1007/s12011-010-8779-x CrossRefGoogle Scholar
  15. 15.
    Berwanger E, Vieira SL, Angel CR, Kindlein L, Mayer AN, Ebbing MA, Lopes M (2018) Copper requirements of broiler breeder hens. Poult Sci 97(8):2785–2797.  https://doi.org/10.3382/ps/pex437 CrossRefGoogle Scholar
  16. 16.
    Coble KF, Burnett DD, DeRouchey JM, Tokach MD, Gonzalez JM, Wu F, Dritz SS, Goodband RD, Woodworth JC, Pluske JR (2018) Effect of diet type and added copper on growth performance, carcass characteristics, energy digestibility, gut morphology, and mucosal mRNA expression of finishing pigs. J Anim Sci 96(8):3288–3301.  https://doi.org/10.1093/jas/sky196 CrossRefGoogle Scholar
  17. 17.
    Coble KF, DeRouchey JM, Tokach MD, Dritz SS, Goodband RD, Woodworth JC, Usry JL (2017) The effects of copper source and concentration on growth performance, carcass characteristics, and pen cleanliness in finishing pigs. J Anim Sci 95(9):4052–4059.  https://doi.org/10.2527/jas2017.1624 CrossRefGoogle Scholar
  18. 18.
    Jiao LF, Zhang QH, Wu H, Wang CC, Cao ST, Feng J, Hu CH (2018) Influences of copper/zinc-loaded montmorillonite on growth performance, mineral retention, intestinal morphology, mucosa antioxidant capacity, and cytokine contents in weaned piglets. Biol Trace Elem Res 185(2):356–363.  https://doi.org/10.1007/s12011-018-1259-4 CrossRefGoogle Scholar
  19. 19.
    Luo XG, Dove CR (1996) Effect of dietary copper and fat on nutrient utilization, digestive enzyme activities, and tissue mineral levels in weanling pigs. J Anim Sci 74(8):1888–1896.  https://doi.org/10.2527/1996.7481888x CrossRefGoogle Scholar
  20. 20.
    Shahzad R, Jones MR, Viles JH, Jones CE (2016) Endocytosis of the tachykinin neuropeptide, neurokinin B, in astrocytes and its role in cellular copper uptake. J Inorg Biochem 162:319–325.  https://doi.org/10.1016/j.jinorgbio.2016.02.027 CrossRefGoogle Scholar
  21. 21.
    Jones CE, Zandawala M, Semmens DC, Anderson S, Hanson GR, Janies DA, Elphick MR (2016) Identification of a neuropeptide precursor protein that gives rise to a “cocktail” of peptides that bind Cu(II) and generate metal-linked dimers. BBA-Gen Subjects 1860 (1, Part A):57–66. doi: https://doi.org/10.1016/j.bbagen.2015.10.008 CrossRefGoogle Scholar
  22. 22.
    Elizondo-Vega R, Cortes-Campos C, Barahona MJ, Carril C, Ordenes P, Salgado M, Oyarce K, Garcia-Robles ML (2016) Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression. Sci Rep 6:33606.  https://doi.org/10.1038/srep33606 CrossRefGoogle Scholar
  23. 23.
    Dziedzic K, Szwengiel A, Gorecka D, Gujska E, Kaczkowska J, Drozdzynska A, Walkowiak J (2016) Effect of wheat dietary fiber particle size during digestion in vitro on bile acid, faecal bacteria and short-chain fatty acid content. Plant Foods Hum Nutr 71(2):151–157.  https://doi.org/10.1007/s11130-016-0537-6 CrossRefGoogle Scholar
  24. 24.
    Xu F, Guo F, Hu XJ, Lin J (2016) Crystal structure of bile salt hydrolase from Lactobacillus salivarius. Acta Crystallogr F Struct Biol Commun 72(Pt 5):376–381.  https://doi.org/10.1107/s2053230x16005707 CrossRefGoogle Scholar
  25. 25.
    Dijkstra M, Havinga R, Vonk RJ, Kuipers F (1996) Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems. Life Sci 59(15):1237–1246.  https://doi.org/10.1016/0024-3205(96)00447-X CrossRefGoogle Scholar
  26. 26.
    Harada M, Sakisaka S, Yoshitake M, Shakadoh S, Gondoh K, Sata M, Tanikawa K (1993) Biliary copper excretion in acutely and chronically copper-loaded rats. Hepatology 17(1):111–117.  https://doi.org/10.1002/hep.1840170120 CrossRefGoogle Scholar
  27. 27.
    Banks KM, Thompson KL, Rush JK, Applegate TJ (2004) Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poult Sci 83(6):990–996.  https://doi.org/10.1093/ps/83.6.990 CrossRefGoogle Scholar
  28. 28.
    Leeson S (2009) Copper metabolism and dietary needs. World Poultry Sci J 65(3):353–366.  https://doi.org/10.1017/S0043933909000269 CrossRefGoogle Scholar
  29. 29.
    Cerqueira NM, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA (2016) Cholesterol biosynthesis: a mechanistic overview. Biochemistry 55(39):5483–5506.  https://doi.org/10.1021/acs.biochem.6b00342 CrossRefGoogle Scholar
  30. 30.
    Kim S, Chao PY, Allen KG (1992) Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J 6(7):2467–2471.  https://doi.org/10.1096/fasebj.6.7.1563598 CrossRefGoogle Scholar
  31. 31.
    Engle TE (2011) Copper and lipid metabolism in beef cattle: a review. J Anim Sci 89(2):591–596.  https://doi.org/10.2527/jas.2010-3395 CrossRefGoogle Scholar
  32. 32.
    Helwig LR, Mulnix EJ, Regenstein J (2006) Effects of varied zinc/copper ratios on egg and plasma cholesterol level in white leghorn hens. J Food Sci 43:666–669.  https://doi.org/10.1111/j.1365-2621.1978.tb02388.x CrossRefGoogle Scholar
  33. 33.
    Konjufca VH, Pesti GM, Bakalli RI (1997) Modulation of cholesterol levels in broiler meat by dietary garlic and copper. Poult Sci 76(9):1264–1271.  https://doi.org/10.1093/ps/76.9.1264 CrossRefGoogle Scholar
  34. 34.
    Maraschiello C, Sarraga C, Esteve-Garcia E, Garcia Regueiro JA (2000) Dietary iron and copper removal does not improve cholesterol and lipid oxidative stability of raw and cooked broiler meat. J Anim Sci 65(2):211–214.  https://doi.org/10.1111/j.1365-2621.2000.tb15981.x CrossRefGoogle Scholar
  35. 35.
    Lamb DJ, Avades TY, Ferns GA (2001) Biphasic modulation of atherosclerosis induced by graded dietary copper supplementation in the cholesterol-fed rabbit. Int J Exp Pathol 82(5):287–294CrossRefGoogle Scholar
  36. 36.
    Arnal N, Castillo O, de Alaniz MJ, Marra CA (2013) Effects of copper and/or cholesterol overload on mitochondrial function in a rat model of incipient neurodegeneration. Int J Alzheimers Dis 2013:645379.  https://doi.org/10.1155/2013/645379 CrossRefGoogle Scholar
  37. 37.
    Arnal N, Morel GR, de Alaniz MJ, Castillo O, Marra CA (2013) Role of copper and cholesterol association in the neurodegenerative process. Int J Alzheimers Dis 2013:414817–414815.  https://doi.org/10.1155/2013/414817 CrossRefGoogle Scholar
  38. 38.
    Mehra R, Sodhi RK, Aggarwal N (2015) Memory restorative ability of clioquinol in copper-cholesterol-induced experimental dementia in mice. Pharm Biol 53(9):1250–1259.  https://doi.org/10.3109/13880209.2014.974061 CrossRefGoogle Scholar
  39. 39.
    Chenchen XU, Wang B, Wenhua GE, Zhang M, Yue B, Zhang X, Wang X (2014) Effects of dietary different copper levels on lipid metabolism,antioxidant ability and immune function of wulong geese at the age of 5 to 16 weeks. Chin J Animal Nutr 26(4):908–917.  https://doi.org/10.3969/j.issn.1006-267x.2014.04.010 CrossRefGoogle Scholar
  40. 40.
    Attia YA, Qota EM, Zeweil HS, Bovera F, Abd Al-Hamid AE, Sahledom MD (2012) Effect of different dietary concentrations of inorganic and organic copper on growth performance and lipid metabolism of White Pekin male ducks. Br Poult Sci 53(1):77–88.  https://doi.org/10.1080/00071668.2011.650151 CrossRefGoogle Scholar
  41. 41.
    Pineda L, Sawosz E, Vadalasetty KP, Chwalibog A (2013) Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Anim Feed Sci Technol 186(1):125–129.  https://doi.org/10.1016/j.anifeedsci.2013.08.012 CrossRefGoogle Scholar
  42. 42.
    Narasimhaiah M, Arunachalam A, Sellappan S, Mayasula VK, Guvvala PR, Ghosh SK, Chandra V, Ghosh J, Kumar H (2018) Organic zinc and copper supplementation on antioxidant protective mechanism and their correlation with sperm functional characteristics in goats. Reprod Domest Anim 53(3):644–654.  https://doi.org/10.1111/rda.13154 CrossRefGoogle Scholar
  43. 43.
    Michalska-Mosiej M, Socha K, Soroczynska J, Karpinska E, Lazarczyk B, Borawska MH (2016) Selenium, zinc, copper, and total antioxidant status in the serum of patients with chronic tonsillitis. Biol Trace Elem Res 173(1):30–34.  https://doi.org/10.1007/s12011-016-0634-2 CrossRefGoogle Scholar
  44. 44.
    Kaya A, Altiner A, Ozpinar A (2006) Effect of copper deficiency on blood lipid profile and haematological parameters in broilers. J Vet Med A Physiol Pathol Clin Med 53(8):399–404.  https://doi.org/10.1111/j.1439-0442.2006.00835.x CrossRefGoogle Scholar
  45. 45.
    Fry RS, Ashwell MS, Lloyd KE, O'Nan AT, Flowers WL, Stewart KR, Spears JW (2012) Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress,and mRNA expression of hepatic copper regulatory proteins in weanling pigs. J Anim Sci 90(9):3112–3119.  https://doi.org/10.2527/jas.2011-4403 CrossRefGoogle Scholar
  46. 46.
    NRC (2005) Mineral tolerance of animals. In: 2th ed edn. National Academies Press, Washington, DCGoogle Scholar
  47. 47.
    Oğuz E, Yuksel H, Enli Y, Tufan A, Turgut G (2009) The effects of copper sulfate on liver histology and biochemical parameters of term Ross Broiler Chicks, vol 133. doi: https://doi.org/10.1007/s12011-009-8447-1 CrossRefGoogle Scholar
  48. 48.
    Mazija H, Prukner-Radovčić E (2002) Manual of poultry diseases Veterinarski fakultet u Zagrebu, ZagrebGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xuezhuang Wu
    • 1
  • Sifa Dai
    • 1
  • Jinling Hua
    • 1
  • Hong Hu
    • 1
  • Shujuan Wang
    • 1
  • Aiyou Wen
    • 1
  1. 1.College of Animal ScienceAnhui Science and Technology UniversityBengbuChina

Personalised recommendations