Skip to main content

Advertisement

Log in

Albatros Create: an interactive and generative tool for the design and 3D modeling of wind turbines with wavy leading edge

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The shape of a wind turbine blade plays a critical role in the efficiency and robustness of energy production. In particular, the Wavy Leading Edge is a morphology that can be implemented in the blades to improve the operating range in unsteady conditions. The best performance is achieved by fine-tuning the blade geometry to the specific context. An aerodynamic exploration of these kinds of morphologies implies generating and evaluating design iterations. Accordingly, this work presents the development of the generative tool Albatros \(\hbox {Create}^{\textregistered }\). Through interactive visualization, infographics, and centralized parameterization, its goal is to support the geometrical definition of the aerodynamic surfaces of horizontal-axis turbines with or without a wavy leading edge. New airfoil profiles can be created, and 3D models of the rotors designed can be automatically generated. The software was implemented in the design of two rotors which were then recreated in a benchmarking analysis with four other softwares. None of the four managed to generate the smooth surfaces in fully-editable models that were achieved with Albatros Create. This work aims at empowering the research community with a user-friendly tool for exploring rotor designs through virtual prototypes. This can help to integrate further the design, modeling, and optimization stages, addressing a wider audience and facilitating the implementation of Wavy Leading Edge morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Abbott, I.H., Von Doenhoff, A.E.: Theory of Wing Sections, Including a Summary of Airfoil Data. Courier Corporation, North Chelmsford (1959)

    Google Scholar 

  2. Abbott, I.H., Von Doenhoff, A.E., Stivers Jr, L.: Summary of airfoil data (1945)

  3. Akour, S.N., Al-Heymari, M., Ahmed, T., Khalil, K.A.: Experimental and theoretical investigation of micro wind turbine for low wind speed regions. Renewab. Energy 116, 215–223 (2018). https://doi.org/10.1016/j.renene.2017.09.076. http://www.sciencedirect.com/science/article/pii/S0960148117309461

  4. Asli, M., Mashhadi Gholamali, B., Mesgarpour Tousi, A.: Numerical analysis of wind turbine airfoil aerodynamic performance with leading edge bump. Math. Probl. Eng. 2015 (2015)

  5. Bai, C.J., Lin, Y.Y., Lin, S.Y., Wang, W.C.: Computational fluid dynamics analysis of the vertical axis wind turbine blade with tubercle leading edge. J. Renew. Sustain. Energy 7(3), 033,124 (2015). https://doi.org/10.1063/1.4922192

    Article  Google Scholar 

  6. Bassett, K., Carriveau, R., Ting, D.K.: 3d printed wind turbines part 1: design considerations and rapid manufacture potential. Sustain. Energy Technol. Assess. 11, 186–193 (2015). https://doi.org/10.1016/j.seta.2015.01.002. http://www.sciencedirect.com/science/article/pii/S221313881500003X

  7. Bezrukovs, V.P., Bezrukovs, V.V., Zacepins, A.J.: Comparative efficiency of wind turbines with different heights of rotor hubs: performance evaluation for latvia. J. Phys. Conf. Ser. 524(1), 012,113 (2014). http://stacks.iop.org/1742-6596/524/i=1/a=012113

  8. Blades, E., Miskovish, S., Luke, E., Collins, E., Kurkchubashe, A.: Multiphysics simulation capability using the simulia co-simulation engine. In: 20th AIAA Computational Fluid Dynamics Conference (2011)

  9. Bukala, J., Damaziak, K., Kroszczynski, K., Krzeszowiec, M., Malachowski, J.: Investigation of parameters influencing the efficiency of small wind turbines. J. Wind Eng. Ind. Aerodyn. 146, 29–38 (2015)

    Article  Google Scholar 

  10. Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E.: Wind Energy Handbook. Wiley, New York (2011)

    Book  Google Scholar 

  11. Čarija, Z., Marušić, E., Novak, Z., Fućak, S.: Numerical analysis of aerodynamic characteristics of a bumped leading edge turbine blade. Eng. Rev. 34(2), 93–101 (2014)

    Google Scholar 

  12. Chen, J., Li, S., Nguyen, V.: The effect of leading edge protuberances on the performance of small aspect ratio foils. In: 15th International Symposium on Flow Visualization, pp. 25–28 (2012)

  13. Chou, J.S., Chiu, C.K., Huang, I.K., Chi, K.N.: Failure analysis of wind turbine blade under critical wind loads. Eng. Fail. Anal. 27, 99–118 (2013)

    Article  Google Scholar 

  14. Corsini, A., Delibra, G., Sheard, A.G.: On the role of leading-edge bumps in the control of stall onset in axial fan blades. J. Fluids Eng. 135(8), 081,104 (2013)

    Article  Google Scholar 

  15. Dassault Systemes: Solidworks api help (2018). http://help.solidworks.com/2018/English/api/sldworksapiprogguide/Welcome.htm

  16. Dassault Systemes: Solidworks help: Splines (2018). http://help.solidworks.com/2016/english/solidworks/sldworks/c_splines.htm

  17. Dassault Systemes: Solidworks help: When to use a boundary (2018). http://help.solidworks.com/2018/english/SolidWorks/sldworks/c_boundary_features.htm

  18. Deperrois, A.: Xflr5 analysis of foils and wings operating at low reynolds numbers. Guidelines for XFLR5 (2009)

  19. ECN Wind Energy Industrial Support: Blade optimization tool bot user manual (2009). https://www.ecn.nl/publicaties/ECN-E--09-092

  20. El khchine, Y., Sriti, M.: Improved blade element momentum theory (bem) for predicting the aerodynamic performances of horizontal axis wind turbine blade (hawt). Tech. Mech. 38, 191–202 (2018). https://doi.org/10.24352/UB.OVGU-2018-028

    Article  Google Scholar 

  21. Favier, J., Pinelli, A., Piomelli, U.: Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers. Comptes Rendus Mécanique 340(1), 107 – 114 (2012). https://doi.org/10.1016/j.crme.2011.11.004. http://www.sciencedirect.com/science/article/pii/S1631072111001902. Biomimetic flow control

  22. Fazelpour, F., Soltani, N., Soltani, S., Rosen, M.A.: Assessment of wind energy potential and economics in the north-western iranian cities of tabriz and ardabil. Renew. Sustain. Energy Rev. 45, 87–99 (2015)

    Article  Google Scholar 

  23. Fischer, X., Coutellier, D.: Research in interactive design. In: Proceedings of Virtual Concept 2005. Springer, Paris (2006). https://books.google.com.co/books?id=sjvQx_x_HTQC

  24. Fischer, X., Daidié, A., Eynard, B., Paredes, M.: Research in Interactive Design (Vol. 4). Springer, Berlin (2016)

  25. Fish, F.E.: Biomimetics: determining engineering opportunities from nature. In: Biomimetics and Bioinspiration, vol. 7401, p. 740109. International Society for Optics and Photonics (2009)

  26. Fish, F.E., Howle, L.E., Murray, M.M.: Hydrodynamic flow control in marine mammals. Integr. Comp. Biol. 48(6), 788–800 (2008)

    Article  Google Scholar 

  27. Gasch, R., Twele, J.: Wind Power Plants: Fundamentals, Design, Construction and Operation. Springer, Berlin (2011)

    Google Scholar 

  28. Garrad Hassan, G.L .: Bladed educational introductory guide (2014). https://confluence.cornell.edu/display/SIMULATION/Bladed+-+GH+Bladed+Basics

  29. Guo, T., Wu, D., Xu, J., Li, S.: The method of large-scale wind turbine blades design based on matlab programming. In: SUPERGEN’09. International Conference on Sustainable Power Generation and Supply, 2009, pp. 1–5. IEEE (2009)

  30. Hadi, F.A.: Diagnosis of the best method for wind speed extrapolation. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4(10), 8176–8183 (2015)

    Google Scholar 

  31. HFI TU Berlin: Qblade: Wind turbine design and simulation (2014). http://q-blade.org/

  32. Huang, G.Y., Shiah, Y., Bai, C.J., Chong, W.: Experimental study of the protuberance effect on the blade performance of a small horizontal axis wind turbine. J. Wind Eng. Ind. Aerodyn. 147, 202–211 (2015). https://doi.org/10.1016/j.jweia.2015.10.005. http://www.sciencedirect.com/science/article/pii/S0167610515002469

  33. Johansen, J., Sørensen, N.N.: Aerodynamic investigation of winglets on wind turbine blades using cfd. Technical ReportRISO (2006)

  34. Kundu, P., Cohen, I., Dowling, D.: Fluid Mechanics. Elsevier Science, Amsterdam (2015). https://books.google.com.co/books?id=EehDBAAAQBAJ

  35. Ladson, C.L., Brooks Jr, C.W.: Development of a computer program to obtain ordinates for naca 4-digit, 4-digit modified, 5-digit, and 16 series airfoils (1975)

  36. Ladson, C.L., Brooks Jr, C.W., Hill, A.S., Sproles, D.W.: Computer program to obtain ordinates for naca airfoils (1996)

  37. Lanzotti, A., Carbone, F., Grazioso, S., Renno, F., Staiano, M.: A new interactive design approach for concept selection based on expert opinion. Int. J. Interactive Des. Manuf. (IJIDeM) 12(4), 1189–1199 (2018). https://doi.org/10.1007/s12008-018-0482-8

    Article  Google Scholar 

  38. Mahmuddin, F.: Rotor blade performance analysis with blade element momentum theory. Energy Procedia 105, 1123–1129 (2017). https://doi.org/10.1016/j.egypro.2017.03.477. http://www.sciencedirect.com/science/article/pii/S1876610217305180. 8th International Conference on Applied Energy, ICAE2016, 8-11 October 2016, Beijing, China

  39. Manwell, J.F., McGowan, J.G., Rogers, A.L.: Wind Energy Explained: Theory, Design and Application. Wiley, New York (2010)

    Google Scholar 

  40. Marten, D., Wendler, J.: Qblade guidelines. Ver. 0.6, Technical University of (TU Berlin), Berlin, Germany (2013)

  41. Marten, D., Wendler, J., Pechlivanoglou, G., Nayeri, C., Paschereit, C.: Qblade: an open source tool for design and simulation of horizontal and vertical axis wind turbines. Int. J. Emerg. Technol. Adv. Eng. 3(3), 264–269 (2013)

    Google Scholar 

  42. Molina, A., Ponce, P., Baltazar Reyes, G.E., Soriano, L.A.: Learning perceptions of smart grid class with laboratory for undergraduate students. Int. J. Interact. Des. Manuf. (IJIDeM) 13(4), 1423–1439 (2019). https://doi.org/10.1007/s12008-019-00603-5

    Article  Google Scholar 

  43. Monteiro, J.P., Silvestre, M.R., Piggott, H., André, J.C.: Wind tunnel testing of a horizontal axis wind turbine rotor and comparison with simulations from two blade element momentum codes. J. Wind Eng. Industrial Aerodyn. 123, 99 – 106 (2013). https://doi.org/10.1016/j.jweia.2013.09.008. http://www.sciencedirect.com/science/article/pii/S0167610513001967

  44. Morgado, J., Silvestre, M., Páscoa, J.: Validation of new formulations for propeller analysis. J. Propul. Power 31(1), 467–477 (2014)

    Article  Google Scholar 

  45. Moriarty, P.J., Hansen, A.C.: Aerodyn theory manual. Tech. rep., National Renewable Energy Lab., Golden, CO (US) (2005)

  46. Mortazavi, S.M., Soltani, M.R., Motieyan, H.: A pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks. Journal of Wind Engineering and Industrial Aerodynamics 136, 62–72 (2015). https://doi.org/10.1016/j.jweia.2014.10.009. http://www.sciencedirect.com/science/article/pii/S0167610514002116

  47. Nadeau, J.P., Fischer, X.: Research in interactive design. Volume 3, Virtual, interactive and integrated product design and manufacturing for industrial innovation. Springer, Paris (2011)

  48. Pennycuick, C.J.: Modelling the Flying Bird, vol. 5. Elsevier, Amsterdam (2008)

    Google Scholar 

  49. Planchard, D.C.: Solidworks 2014 reference guide. Tech. rep., SDC publications (2014)

  50. Raffaeli, R., Germani, M.: Advanced computer aided technologies for design automation in footwear industry. Int. J. Interact. Des. Manuf. (IJIDeM) 5(3), 137 (2011)

    Article  Google Scholar 

  51. Rafiee, A., der Male, P.V., Dias, E., Scholten, H.: Interactive 3d geodesign tool for multidisciplinary wind turbine planning. J. Environ. Manag. 205, 107–124 (2018). https://doi.org/10.1016/j.jenvman.2017.09.042. http://www.sciencedirect.com/science/article/pii/S0301479717309118

  52. Sedaghat, A., Assad, M.E.H., Gaith, M.: Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades. Energy 77, 752–759 (2014)

    Article  Google Scholar 

  53. Sedaghat, A., Hassanzadeh, A., Jamali, J., Mostafaeipour, A., Chen, W.H.: Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. Appl. Energy 205(Supplement C), 781 – 789 (2017). https://doi.org/10.1016/j.apenergy.2017.08.079. http://www.sciencedirect.com/science/article/pii/S0306261917310978

  54. Shaviv, E.: Design tools for bio-climatic and passive solar buildings. Solar Energy 67(4), 189–204 (1999). https://doi.org/10.1016/S0038-092X(00)00067-0. http://www.sciencedirect.com/science/article/pii/S0038092X00000670

  55. Silvestre, M.A., Morgado, J.P., Pascoa, J.: Jblade: a propeller design and analysis code. In: 2013 International Powered Lift Conference, p. 4220 (2013)

  56. Simis, a spin-off from the Norwegian University of Science and Technology: ashes: Blazing fast wind turbine analysis (2018). https://www.simis.io/

  57. Tangler, J.L., Somers, D.M.: Nrel airfoil families for hawts. Tech. rep., National Renewable Energy Lab., Golden, CO (1995)

  58. Thomassen, P.E., Bruheim, P.I., Suja, L., Frøyd, L., et al.: A novel tool for fem analysis of offshore wind turbines with innovative visualization techniques. In: The Twenty-Second International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2012)

  59. Timmer, W.: An overview of naca 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 268 (2009)

  60. Tong, F., Qiao, W., Xu, K., Wang, L., Chen, W., Wang, X.: On the study of wavy leading-edge vanes to achieve low fan interaction noise. J. Sound Vib. 419, 200–226 (2018). https://doi.org/10.1016/j.jsv.2018.01.017. http://www.sciencedirect.com/science/article/pii/S0022460X18300257

  61. Tzivelekis, C.A., Yiotis, L.S., Fountas, N.A., Krimpenis, A.A.: Parametrically automated 3d design and manufacturing for spiral-type free-form models in an interactive cad/cam environment. Int. J. Interact. Des. Manuf. (IJIDeM) 11(2), 223–232 (2017)

    Article  Google Scholar 

  62. Universidad EAFIT: Albatros create (2018). http://www.eafit.edu.co/albatroscreate

  63. Vasel-Be-Hagh, A., Archer, C.L.: Wind farm hub height optimization. Appl. Energy 195(Supplement C), 905 – 921 (2017). https://doi.org/10.1016/j.apenergy.2017.03.089. http://www.sciencedirect.com/science/article/pii/S0306261917303306

  64. Vergnano, A., Berselli, G., Pellicciari, M.: Parametric virtual concepts in the early design of mechanical systems: a case study application. Int. J. Interact. Des. Manuf. (IJIDeM) 11(2), 331–340 (2017). https://doi.org/10.1007/s12008-015-0295-y

    Article  Google Scholar 

  65. Yoon, H., Hung, P., Jung, J., Kim, M.: Effect of the wavy leading edge on hydrodynamic characteristics for flow around low aspect ratio wing. Comput. Fluids 49(1), 276–289 (2011). https://doi.org/10.1016/j.compfluid.2011.06.010. http://www.sciencedirect.com/science/article/pii/S0045793011001988

  66. Zhang, R.K., Wu, V.D.J.Z.: Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge. Wind Energy 15(3), 407–424 (2012). https://doi.org/10.1002/we.479

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Santiago Bernal Del Rio, who participated in the development of the GUI and the implementation of the NACA equations in conjunction with Baptiste Simon Lepage, and to Valentin Niclas, who participated in the development of the functionalities programmed in Visual Basic for Applications. Special thanks to Universidad EAFIT through the postgraduate studies grant “Undergraduate research excellence scholarship”. Also, special thanks to Colciencias (Colombian Administrative Department of Science, Technology and Innovation) and Universidad EAFIT, who sponsored the “Young Researchers and Innovators Program” in the 645-2014 and 761-2016 calls. This research has been developed in the framework of the Research Program “Estrategia de transformación del sector energético Colombiano en el horizonte de 2030-ENERGETICA 2030”, code 58667, funded by the World Bank through Colciencias’ 778-2017 call - Scientific Ecosystem, Contract FP44842-210-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Arias-Rosales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-Rosales, A., Osorio-Gómez, G. Albatros Create: an interactive and generative tool for the design and 3D modeling of wind turbines with wavy leading edge. Int J Interact Des Manuf 14, 631–650 (2020). https://doi.org/10.1007/s12008-020-00655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-020-00655-y

Keywords

Navigation