Skip to main content

Advertisement

Log in

Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Complex market dynamics force enterprises to face new challenges. A manufacturing or assembly system has to create products based on customer requirements at the lowest possible price and to react rapidly to external changes such as market or political trends. In this regard, flexible and rapid changeable manufacturing and assembly systems are promising solutions to overcome these issues. In the past, small and medium-sized enterprises were less affected by unstable market dynamics thanks to their smaller and more manageable structures. This feature allowed to readapt the industrial facilities in a short time. The current market volatility also forces small and medium-sized enterprises to pursue innovative approaches. This work shows how an Axiomatic Design based approach could be successfully used to achieve these purposes by defining guidelines for the design of flexible and agile manufacturing and assembly systems, with a special focus on small- and medium-sized enterprises (SMEs). Using the Axiomatic Design approach and the software Acclaro DFFS, customer needs and functional requirements were defined and translated into a set of design guidelines for flexible and agile manufacturing and assembly systems for SMEs. This approach helps designers to optimize their designs at a very early stage before making costly decisions or performing effortful simulations or computer-aided engineering analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ElMaraghy, H.A.: Change in manufacturing–research and industrial challenges. In: ElMaraghy, H. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 2–9. Springer, Berlin (2011)

    Google Scholar 

  2. Eurostat.: Industry by employment size class Ressource document. NACE Rev. 2, B-E. Accessed December 14 2015. http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do.pdf (2015)

  3. Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., Rickne, A.: Analyzing the functional dynamics of technological innovation systems: a scheme of analysis. Res. Policy 37(3), 407–429 (2008). https://doi.org/10.1016/j.respol.2007.12.003

    Article  Google Scholar 

  4. Suh, N.P.: Axiomatic Design-Advances and Applications. Oxford University Press, New York (2009)

    Google Scholar 

  5. ElMaraghy, H.A., ElMaraghy, W.H.: Variety, complexity and value creation. In: Zäh, Michael F. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 1–7. Springer, Berlin (2014)

    Google Scholar 

  6. Babic, B.: Axiomatic design of flexible manufacturing systems. Int. J. Prod. Res. 37(5), 1159–1173 (1999). https://doi.org/10.1080/002075499191454

    Article  MATH  Google Scholar 

  7. Cochran, D.S., Eversheim, W., Kubin, G., Sesterhenn, M.L.: The application of axiomatic design and lean management principles in the scope of production system segmentation. Int. J. Prod. Res. 38(6), 1377–1396 (2000). https://doi.org/10.1080/002075400188906

    Article  MATH  Google Scholar 

  8. Matt, D.T.: Functional periodicity as a concept for the (re-)design to agility of production systems. Prod. Eng. Res. Devel. 4(4), 363–369 (2010). https://doi.org/10.1007/s11740-010-0247-0

    Article  Google Scholar 

  9. Matt, D.T., Rauch, E.: Design and implementation approach for distributed manufacturing networks using axiomatic design. In: Farid, Amro M., Suh, Nam P. (eds.) Axiomatic Design in Large Systems, pp. 225–250. Springer, Berlin (2016)

    Chapter  Google Scholar 

  10. Arcidiacono, G., Brown, C.A., Bucciarelli, L., Melosi, F.: Axiomatic design of production systems for performance improvement: a project identification and prioritization model. In: Farid, Amro M., Suh, Nam P. (eds.) Axiomatic Design in Large Systems, pp. 251–272. Springer, Berlin (2016)

    Chapter  Google Scholar 

  11. Fischer, X., Nadeau, J.P.: Research in Interactive Design, vol. 3. Springer, Paris (2011)

    Book  Google Scholar 

  12. Fuwen, H., Jiajian, C., Yunhua, H.: Interactive design for additive manufacturing: a creative case of synchronous belt drive. Int. J. Interact. Design Manuf. (2017). https://doi.org/10.1007/s12008-017-0453-5

    Article  Google Scholar 

  13. Dore, R., Pailhes, J., Fischer, X., Nadeau, J.P.: Identification of design variables and criterion variables towards the integration of user requirements into preliminary design. Int. J. Prod. Dev. 4(5), 508–529 (2007). https://doi.org/10.1504/IJPD.2007.013045

    Article  Google Scholar 

  14. Bednar, S., Modrak, V.: Mass customization and its impact on assembly process’ complexity. Int. J. Qual. Res. 8(3), 417–430 (2014)

    Google Scholar 

  15. Chryssolouris, G.: Manufacturing Systems: Theory and Practice. Springer, Berlin (2005)

    Google Scholar 

  16. Monden, Y.: Lean management of global supply chain: dynamic combination model of market, product life-cycle, product design, and supply chain. In: Monden, Y., Minagawa, Y. (eds.) Lean Management of Global Supply Chain, pp. 3–46. World Scientific, Singapore (2015)

    Chapter  Google Scholar 

  17. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., van Brussel, H.: Reconfigurable manufacturing systems. CIRP Ann. Manuf. Technol. 48(2), 527–540 (1999). https://doi.org/10.1016/S0007-8506(07)63232-6

    Article  Google Scholar 

  18. Abele, E., Liebeck, T., Wörn, A.: Measuring flexibility in investment decisions for manufacturing systems. Ann. CIRP 55(1), 433–440 (2006). https://doi.org/10.1016/S0007-8506(07)60452-1

    Article  Google Scholar 

  19. Mehrabi, M.G., Ulsoy, A.G., Koren, Y.: Reconfigurable manufacturing systems: key to future manufacturing. J. Intell. Manuf. 11(4), 403–419 (2000). https://doi.org/10.1023/A:1008930403506

    Article  Google Scholar 

  20. Koren, Y., Wang, W., Gu, X.: Value creation through design for scalability of reconfigurable manufacturing systems. Int. J. Prod. Res. 55(5), 1227–1242 (2017). https://doi.org/10.1080/00207543.2016.1145821

    Article  Google Scholar 

  21. Gunasekaran, A.: Agile manufacturing: enablers and an implementation framework. Int. J. Prod. Res. 36(5), 1223–1247 (1998). https://doi.org/10.1080/002075498193291

    Article  MATH  Google Scholar 

  22. Yusuf, Y.Y., Sarhadi, M., Gunasekaran, A.: Agile manufacturing: the drivers, concepts and attributes. Int. J. Prod. Econ. 62(1), 33–43 (1999). https://doi.org/10.1016/S0925-5273(98)00219-9

    Article  Google Scholar 

  23. Wiendahl, H.P., ElMaraghy, H.A., Nyhuis, P., Zäh, M.F., Wiendahl, H.H., Duffie, N., Brieke, M.: Changeable manufacturing-classification, design and operation. CIRP Ann. Manuf. Technol. 56(2), 783–809 (2007). https://doi.org/10.1016/j.cirp.2007.10.003

    Article  Google Scholar 

  24. ElMaraghy, H.A.: Flexible and reconfigurable manufacturing systems paradigms. Int. J. Flex. Manuf. Syst. 17(4), 261–276 (2005)

    Article  MATH  Google Scholar 

  25. Van Overeem, A., Witters, J., Peristeras, V.: An interoperability framework for Pan-European e-government services (PEGS). In: 40th Annual Hawaii International Conference on System Sciences, 2007. HICSS 2007, pp. 7–7 (2007)

  26. Davis, J., Edgar, T., Porter, J., Bernaden, J., Sarli, M.: Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng. 47, 145–156 (2012). https://doi.org/10.1016/j.compchemeng.2012.06.037

    Article  Google Scholar 

  27. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015). https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  28. Morgan, J., O’Donnell, G.E.: Cyber physical process monitoring systems. J. Intell. Manuf. (2015). https://doi.org/10.1007/s10845-015-1180-z

    Article  Google Scholar 

  29. Liao, Y., Deschamps, F., Loures, E.D.F.R., Ramos, L.F.P.: Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. Int. J. Prod. Res. 55(12), 3609–3629 (2017)

    Article  Google Scholar 

  30. Rauch, E., Seidenstricker, S., Dallasega, P., Hämmerl, R.: Collaborative cloud manufacturing: design of business model innovations enabled by cyberphysical systems in distributed manufacturing systems. Journal of Engineering 2016 (2016). https://doi.org/10.1155/2016/1308639

  31. Lee, E.A.: The past, present and future of cyber-physical systems: a focus on models. Sensors 15(3), 4837–4869 (2015)

    Article  Google Scholar 

  32. Datta, S.P.A.: Dynamic socio-economic disequilibrium catalyzed by the Internet of Things. http://dspace.mit.edu/bitstream/handle/1721.1/86935/Dynamic%20Socio-Economic%20Disequilibrium%20_%20Shoumen%20Datta.pdf?sequence=226

  33. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of the 11th IEEE Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC’08), pp. 363–369 (2008)

  34. Spath, D., Gerlach, S., Hämmerle, M., Schlund, S., Strölin, T.: Cyber-physical system for self-organised and flexible labour utilisation. In: Proceedings of the 22nd International Conference on Production Research (ICPR’13) (2013)

  35. Karnouskos, S., Colombo, A.W., Bangemann, T., et al.: The IMC-AESOP architecture for cloud-based industrial cyber-physical systems. In: Tilly, M., Sikora, M., Jammes, F., et al. (eds.) Industrial Cloud-Based Cyber-Physical Systems: The IMC-AESOP Approach, pp. 49–88. Springer, Berlin (2014)

    Chapter  Google Scholar 

  36. Suh, N.P.: The Principles of Design. Oxford University Press, New York (1990)

    Google Scholar 

  37. Guenov, M.D., Barker, S.G.: Application of axiomatic design and design structure matrix to the decomposition of engineering systems. Syst. Eng. 8(1), 29–40 (2005). https://doi.org/10.1002/sys.20015

    Article  Google Scholar 

  38. Brown, C.A.: Teaching axiomatic design to engineers—theory, applications, and software. J. Manuf. Syst. 24(3), 186–195 (2005). https://doi.org/10.1016/S0278-6125(06)80007-5

    Article  Google Scholar 

  39. Muzakkir, S.M., Hirani, H.: A magnetorheological fluid based design of variable valve timing system for internal combustion engine using axiomatic design. Int. J. Curr. Eng. Res. 5(2), 603–612 (2015)

    Google Scholar 

  40. Thompson, M.K.: Improving the requirements process in axiomatic design theory. CIRP Ann. Manuf. Technol. 62(1), 115–118 (2013). https://doi.org/10.1016/j.cirp.2013.03.114

    Article  Google Scholar 

  41. Suh, N.P.: Complexity-Theory and Applications. Oxford University Press, New York (2005)

    Google Scholar 

  42. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software Engineering. Springer, Berlin (2012)

    MATH  Google Scholar 

  43. Matt, D.T.: Reducing the structural complexity of growing organizational systems by means of axiomatic designed networks of core competence cells. J. Manuf. Syst. 26(3), 178–187 (2007)

    Article  MathSciNet  Google Scholar 

  44. Cochran, D.S., Arinez, J.F., Duda, J.W., Linck, J.: A decomposition approach for manufacturing system design. J. Manuf. Syst. 20(6), 371–389 (2002). https://doi.org/10.1016/S0278-6125(01)80058-3

    Article  Google Scholar 

  45. European Commission: Growth: Internal market, industry, entrepreneurship and SMEs. Accessed December 21 2016. http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition/index_en.htm (2016)

  46. Zhou, F., Ji, Y., Jiao, R.J.: Affective and cognitive design for mass personalization: status and prospect. J. Intell. Manuf. 24(5), 1047–1069 (2013). https://doi.org/10.1007/s10845-012-0673-2

    Article  Google Scholar 

  47. Jiao, J.R., Simpson, T.W., Siddique, Z.: Product family design and platform-based product development: a state-of-the-art review. J. Intell. Manuf. 18(1), 5–29 (2007)

    Article  Google Scholar 

  48. Jiao, J., Tseng, M.M.: A methodology of developing product family architecture for mass customization. J. Intell. Manuf. 10(1), 3–20 (1999)

    Article  Google Scholar 

  49. Cochran, D.S., Kinard, D., Bi, Z.: Manufacturing system design meets big data analytics for continuous improvement. Procedia CIRP 50, 647–652 (2016). https://doi.org/10.1016/j.procir.2016.05.004

    Article  Google Scholar 

  50. Yang, S., Bagheri, B., Kao, H.-A., Lee, J.: A unified framework and platform for designing of cloud-based machine health monitoring and manufacturing systems. ASME J. Manuf. Sci. Eng. 137(4), 040914 (2015). https://doi.org/10.1115/1.4030669

    Article  Google Scholar 

  51. Cochran, D.S., Hendricks, S., Barnes, J., Bi, Z.: Extension of manufacturing system design decomposition to implement manufacturing systems that are sustainable. J. Manuf. Sci. Eng. 138(10), 101006 (2016). https://doi.org/10.1115/1.4034303

    Article  Google Scholar 

  52. Matt, D.T., Rauch, E.: Design of a scalable modular production system for a two-stage food service franchise system. Int. J. Eng. Bus. Manag. 4, 32 (2012)

    Article  Google Scholar 

  53. Rauch, E., Dallasega, P., Matt, D.T.: Sustainable production in emerging markets through distributed manufacturing systems (DMS). J. Clean. Prod. 135, 127–138 (2016). https://doi.org/10.1016/j.jclepro.2016.06.106

    Article  Google Scholar 

  54. Zhang, W., Zhang, S., Guo, S., Yang, Y., Chen, Y.: Concurrent optimal allocation of distributed manufacturing resources using extended teaching–learning-based optimization. Int. J. Prod. Res. 55(3), 718–735 (2017). https://doi.org/10.1080/00207543.2016.1203078

    Article  Google Scholar 

  55. Matt, D.T., Rauch, E.: Continuous improvement of manufacturing systems with the concept of functional periodicity. Key Eng. Mater. 473, 783–790 (2011). https://doi.org/10.4028/www.scientific.net/KEM.473.783

    Article  Google Scholar 

  56. Rauch, E., Dallasega, P., Matt, D.T.: Complexity reduction in engineer-to-order industry through real-time capable production planning and control. Prod. Eng. (2018). https://doi.org/10.1007/s11740-018-0809-0

    Article  Google Scholar 

Download references

Acknowledgements

The results of this study are part of the project ‘Field study to determine requirements for flexible and agile manufacturing and assembly systems for SMEs’, supported by the Free University of Bozen-Bolzano (Italy) under Grant TN2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Rauch.

Ethics declarations

Conflict of interest

The authors declare that the experiments comply with the current laws of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauch, E., Spena, P.R. & Matt, D.T. Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs. Int J Interact Des Manuf 13, 1–22 (2019). https://doi.org/10.1007/s12008-018-0460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0460-1

Keywords

Navigation