Skip to main content

Advertisement

Log in

Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—a Critical Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Red beets (Beta vulgaris L.) have high levels of betalains and other phytochemical compounds that are associated with antioxidant activity. They are ranked higher than other fruits and vegetables that are known for excellent health-promoting properties, such as Swiss chard. Red beet pigments have been extensively used in the food industry as a natural colorant. Although the antimicrobial activity of red beet has many potential applications in the food and consumer product industries, it has not been thoroughly investigated. In this article, we summarize the findings from recent studies quantifying phytochemical antioxidants in red beet in comparison with other natural sources and critically examine the current research where the antimicrobial potential of red beet extract has investigated, highlighting the associated challenges and limitations of these approaches. Finally, we discuss how red beets can be commercially exploited for their antimicrobial properties and future prospects for new value-added red beet products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83–90.

    Article  CAS  Google Scholar 

  • Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2, 875–877.

    Article  CAS  Google Scholar 

  • Alard, D., Wray, V., Grotjahn, L., Reznik, H., & Strack, D. (1985). Neobetanin: isolation and identification from Beta vulgaris. Phytochemistry, 24, 2383–2385.

    Article  CAS  Google Scholar 

  • Albohiri, H. H., Al-Zanbagi, N. A., & Albohairi, S. H. (2016). In vivo trials of potential antimalarial from Beta vulgaris extracts in Jeddah, Saudi Arabia. World Journal of Zoology, 11, 86–96.

    Google Scholar 

  • Altekruse, S. F., Cohen, M. L., & Swerdlow, D. L. (1997). Emerging foodborne diseases. Emerging Infectious Diseases, 3, 285–293.

    Article  CAS  Google Scholar 

  • Ames, B. N., Shigenaga, M. K. & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 90, 7915–7922.

  • Andrades, M., Ritter, C., de Oliveira, M. R., Streck, E. L., Moreira, J. C. F., & Dal-Pizzol, F. (2011). Antioxidant treatment reverses organ failure in rat model of sepsis: role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress. Journal of Surgical Research, 167, e307–e313.

    Article  CAS  Google Scholar 

  • Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48, 5–16.

    Article  CAS  Google Scholar 

  • Antolak, H., Czyzowska, A., & Kregiel, D. (2016). Antibacterial and antiadhesive activities of extracts from edible plants against soft drink spoilage by Asaia spp. Journal of Food Protection, 80, 25–34.

    Article  Google Scholar 

  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3, 113–126.

    Article  CAS  Google Scholar 

  • Arnesen, L. P. S., Fagerlund, A., & Granum, P. E. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiology Reviews, 32, 579–606.

    Article  CAS  Google Scholar 

  • Austria, R., Semenzato, A., & Bettero, A. (1997). Stability of vitamin C derivatives in solution and topical formulations. Journal of Pharmaceutical and Biomedical Analysis, 15, 795–801.

    Article  CAS  Google Scholar 

  • Ayala-Zavala, J. F., Vega-Vega, V., Rosas-Domnguez, C., Palafox-Carlos, H., Villa-Rodriguez, J. A., Siddiqui, M. W., Dvila-Avia, J. E., & Gonzlez-Aguilar, G. A. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International, 44, 1866–1874.

    Article  CAS  Google Scholar 

  • Azeredo, H. (2009). Betalains: properties, sources, applications, and stability—a review. International Journal of Food Science and Technology, 44, 2365–2376.

    Article  CAS  Google Scholar 

  • Bahorun, T., Luximon-Ramma, A., Crozier, A., & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84, 1553–1561.

    Article  CAS  Google Scholar 

  • Bakar, J., CE, S., Muhammad, S., Kharidah, S., & Mat Hashim, D. (2011). Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus) peel. International Food Research Journal, 18, 279–286.

    Google Scholar 

  • Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61, 1–10.

    Article  CAS  Google Scholar 

  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191–203.

    Article  CAS  Google Scholar 

  • Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6, 71–79.

    Article  Google Scholar 

  • Bandyopadhyay, M., Chakraborty, R., & Raychaudhuri, U. (2007). A process for preparing a natural antioxidant enriched dairy product (Sandesh). LWT-Food Science and Technology, 40, 842–851.

    Article  CAS  Google Scholar 

  • Ben Haj Koubaier, H., Snoussi, A., Essaidi, I., Chaabouni, M. M., Thonart, P., & Bouzouita, N. (2014). Betalain and phenolic compositions, antioxidant activity of tunisian red beet (Beta vulgaris L. conditiva) roots and stems extracts. International Journal of Food Properties, 17, 1934–1945.

    Article  CAS  Google Scholar 

  • Benzie, I. F. (2003). Evolution of dietary antioxidants. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 136, 113–126.

    Article  CAS  Google Scholar 

  • Besser, R. E., Lett, S. M., Weber, J. T., Doyle, M. P., Barrett, T. J., Wells, J. G., & Griffin, P. M. (1993). An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157: H7 in fresh-pressed apple cider. JAMA, 269, 2217–2220.

    Article  CAS  Google Scholar 

  • Bezalwar Pratik, M., Gomashe Ashok, V., & Gulhane Pranita, A. (2014). A quest of anti-acne potential of herbal medicines for extermination of MDR Staphylococcus aureus. International Journal of Pharmaceutical Science Invention, 3, 12–17.

    Google Scholar 

  • Bilyk, A., Kolodij, M. A., & Sapers, G. M. (1981). Stabilization of red beet pigments with isoascorbic acid. Journal of Food Science, 46, 1616–1617.

    Article  CAS  Google Scholar 

  • Bindhu, M. R., & Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 373–378.

    Article  CAS  Google Scholar 

  • Biondo, P. B. F., Boeing, J. S., Barizo, R. O., Souza, N. E. D., Matsushita, M., Oliveira, C. C. D., Boroski, M., & Visentainer, J. V. (2014). Evaluation of beetroot (Beta vulgaris L.) leaves during its developmental stages: a chemical composition study. Food Science and Technology (Campinas), 34, 94–101.

    Article  Google Scholar 

  • Boo, H., Hwang, S., Bae, C., Park, S., Heo, B., & Gorinstein, S. (2012). Extraction and characterization of some natural plant pigments. Industrial Crops and Products, 40, 129–135.

    Article  CAS  Google Scholar 

  • Boyce, T. G., Swerdlow, D. L., & Griffin, P. M. (1995). Escherichia coli O157: H7 and the hemolytic–uremic syndrome. New England Journal of Medicine, 333, 364–368.

    Article  CAS  Google Scholar 

  • Brockington, S. F., Walker, R. H., Glover, B. J., Soltis, P. S., & Soltis, D. E. (2011). Complex pigment evolution in the Caryophyllales. New Phytologist, 190, 854–864.

    Article  CAS  Google Scholar 

  • Brooks, J. D., & Flint, S. H. (2008). Biofilms in the food industry: problems and potential solutions. International Journal of Food Science and Technology, 43, 2163–2176.

    Article  CAS  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.

    Article  CAS  Google Scholar 

  • Butera, D., Tesoriere, L., Di Gaudio, F., Bongiorno, A., Allegra, M., Pintaudi, A. M., Kohen, R., & Livrea, M. A. (2002). Antioxidant activities of Sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. Journal of Agricultural and Food Chemistry, 50, 6895–6901.

    Article  CAS  Google Scholar 

  • Buysse, J., Vanden Brande, K., & Merckx, R. (1995). The distribution of radiocesium and potassium in spinach plants grown at different shoot temperatures. Journal of Plant Physiology, 146, 263–267.

    Article  CAS  Google Scholar 

  • Bylka, W., Matlawska, I., & Pilewski, N. A. (2004). Natural flavonoids as antimicrobial agents. Jana, 7, 24–31.

    Google Scholar 

  • Cagri, A., Ustunol, Z., & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67, 833–848.

    Article  CAS  Google Scholar 

  • Cai, Y., & Corke, H. (1999). Amaranthus betacyanin pigments applied in model food systems. Journal of Food Science, 64, 869–873.

    Article  CAS  Google Scholar 

  • Cai, Y., Sun, M., & Corke, H. (2005). Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends in Food Science & Technology, 16, 370–376.

    Article  CAS  Google Scholar 

  • Canadanovic-Brunet, J., Savatovic, S. S., Cetkovic, G. S., Vulic, J. J., Djilas, S. M., Markov, S. L., & Cvetkovic, D. D. (2011). Antioxidant and antimicrobial activities of beet root pomace extracts. Czech Journal of Food Sciences, 29, 575–585.

    CAS  Google Scholar 

  • Castellar, R., Obón, J. M., Alacid, M., & Fernández-López, J. A. (2003). Color properties and stability of betacyanins from Opuntia fruits. Journal of Agricultural and Food Chemistry, 51, 2772–2776.

    Article  CAS  Google Scholar 

  • Celli, G. B., & Brooks, M. S. L. (2016). Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins—a current review. Food Research International, In press.

  • Cetin-Karaca, H., & Newman, M. C. (2015). Antimicrobial efficacy of natural phenolic compounds against gram positive foodborne pathogens. Journal of Food Research, 4, 14–27.

    Article  Google Scholar 

  • Chakraborty, A., Khan, S. U., Hasnat, M. A., Parveen, S., Islam, M. S., Mikolon, A., Chakraborty, R. K., Ahmed, B., Ara, K., & Haider, N. (2012). Anthrax outbreaks in Bangladesh, 2009–2010. The American Journal of Tropical Medicine and Hygiene, 86, 703–710.

    Article  Google Scholar 

  • Chang, S., Hsieh, C., & Yen, G. (2008). The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds. Food Chemistry, 106, 569–575.

    Article  CAS  Google Scholar 

  • Chattopadhyay, P., Chatterjee, S., & Sen, S. K. (2008). Biotechnological potential of natural food grade biocolorants. African Journal of Biotechnology, 7, 2972–2985.

    CAS  Google Scholar 

  • Chavez-Santoscoy, R. A., Gutierrez-Uribe, J. A., & Serna-Saldívar, S. O. (2009). Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods for Human Nutrition, 64, 146–152.

    Article  CAS  Google Scholar 

  • Cho, J., Bing, S. J., Kim, A., Lee, N. H., Byeon, S., Kim, G., & Jee, Y. (2017). Beetroot (Beta vulgaris) rescues mice from γ-ray irradiation by accelerating hematopoiesis and curtailing immunosuppression. Pharmaceutical Biology, 55, 306–319.

    Article  CAS  Google Scholar 

  • Christiansson, A., Naidu, A. S., Nilsson, I., Wadstrm, T., & Pettersson, H. E. (1989). Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Applied and Environmental Microbiology, 55, 2595–2600.

    CAS  Google Scholar 

  • Clifford, M. N. (2000). Anthocyanins–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80, 1063–1072.

    Article  CAS  Google Scholar 

  • Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7, 2801–2822.

    Article  CAS  Google Scholar 

  • Cornago, D. F., Rumbaoa, R. G. O., & Geronimo, I. M. (2011). Philippine Yam (Dioscorea spp.) tubers phenolic content and antioxidant capacity. Philippine Journal of Science, 140, 145–152.

    Google Scholar 

  • Costerton, J. W., Ingram, J. M., & Cheng, K. J. (1974). Structure and function of the cell envelope of gram-negative bacteria. Bacteriological Reviews, 38, 87–110.

    CAS  Google Scholar 

  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12, 564–582.

    CAS  Google Scholar 

  • Crimi, E., Sica, V., Williams-Ignarro, S., Zhang, H., Slutsky, A. S., Ignarro, L. J., & Napoli, C. (2006). The role of oxidative stress in adult critical care. Free Radical Biology and Medicine, 40, 398–406.

    Article  CAS  Google Scholar 

  • Cushnie, T. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343–356.

    Article  CAS  Google Scholar 

  • Cushnie, T. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38, 99–107.

    Article  CAS  Google Scholar 

  • Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23, 174–181.

    Article  CAS  Google Scholar 

  • Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313–7352.

    Article  CAS  Google Scholar 

  • Davidson, P. M., Taylor, T. M., & Schmidt, S. E. (2013). Chemical preservatives and natural antimicrobial compounds. In M. Doyle & L. Beuchat (Eds.), Food microbiology: Fundamentals and Frontiers (3rd ed., pp. 765–801). Washington, DC: American Society of Microbiology.

    Google Scholar 

  • Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794, 808–816.

    Article  CAS  Google Scholar 

  • Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40, 173–289.

    Article  CAS  Google Scholar 

  • Devasagayam, T., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. The Journal of the Association of Physicians of India, 52, 794–804.

    CAS  Google Scholar 

  • DeVita, M. D., Wadhera, R. K., Theis, M. L., & Ingham, S. C. (2007). Assessing the potential of Streptococcus pyogenes and Staphylococcus aureus transfer to foods and customers via a survey of hands, hand-contact surfaces and food-contact surfaces at foodservice facilities. Journal of Foodservice, 18, 76–79.

    Article  Google Scholar 

  • Drobniewski, F. A. (1993). Bacillus cereus and related species. Clinical Microbiology Reviews, 6, 324–338.

    Article  CAS  Google Scholar 

  • Ehling-Schulz, M., Fricker, M., & Scherer, S. (2004). Bacillus cereus, the causative agent of an emetic type of food-borne illness. Molecular Nutrition & Food Research, 48, 479–487.

    Article  CAS  Google Scholar 

  • Elbandy, M. A., & Abdelfadeil, M. G. (2008). Stability of betalain pigments from a red beetroot (Beta vulgaris). Egyptian Journal Food Science, 36, 49–60.

    CAS  Google Scholar 

  • El-Gazzar, F. E., & Marth, E. H. (1992). Salmonellae, salmonellosis, and dairy foods: a review. Journal of Dairy Science, 75, 2327–2343.

    Article  CAS  Google Scholar 

  • Esatbeyoglu, T., Wagner, A. E., Schini-Kerth, V. B., & Rimbach, G. (2015). Betanin—a food colorant with biological activity. Molecular Nutrition & Food Research, 59, 36–47.

    Article  CAS  Google Scholar 

  • Esquivel, P. (2016). Betalains. In R. Carle & R. M. Schweiggert (Eds.), Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color (pp. 81–99). UK: Woodhead Publishing.

    Chapter  Google Scholar 

  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols—a review. Trends in Food Science & Technology, 21, 510–523.

    Article  CAS  Google Scholar 

  • Fang, Y., Yang, S., & Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18, 872–879.

    Article  CAS  Google Scholar 

  • Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C. I., Angioni, A., Dessi, S., Marzouki, N., & Cabras, P. (2007). Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. Journal of Agricultural and Food Chemistry, 55, 963–969.

    Article  CAS  Google Scholar 

  • Fincan, M., DeVito, F., & Dejmek, P. (2004). Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 64, 381–388.

    Article  Google Scholar 

  • Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239–247.

    Article  CAS  Google Scholar 

  • Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. The Journal of Biological Chemistry, 73, 627–650.

    CAS  Google Scholar 

  • Ford-Lloyd, B. V., & Williams, J. T. (1975). A revision of Beta section Vulgares (Chenopodiaceae), with new light on the origin of cultivated beets. Botanical Journal of the Linnean Society, 71, 89–102.

    Article  Google Scholar 

  • Frank, T., Stintzing, F. C., Carle, R., Bitsch, I., Quaas, D., Stra, G., Bitsch, R., & Netzel, M. (2005). Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacological Research, 52, 290–297.

    Article  CAS  Google Scholar 

  • Galley, H. F. (2011). Oxidative stress and mitochondrial dysfunction in sepsis. British Journal of Anaesthesia, 107, 57–64.

    Article  CAS  Google Scholar 

  • Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2009). The role of phenolic hydroxy groups in the free radical scavenging activity of betalains. Journal of Natural Products, 72, 1142–1146.

    Article  CAS  Google Scholar 

  • Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2010). Structural implications on color, fluorescence, and antiradical activity in betalains. Planta, 232, 449–460.

    Article  CAS  Google Scholar 

  • Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2012). Purification and antiradical properties of the structural unit of betalains. Journal of Natural Products, 75, 1030–1036.

    Article  CAS  Google Scholar 

  • Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2016). Biological activities of plant pigments betalains. Critical Reviews in Food Science and Nutrition, 56, 937–945.

    Article  CAS  Google Scholar 

  • Gandía-Herrero, F., & García-Carmona, F. (2013). Biosynthesis of betalains: yellow and violet plant pigments. Trends in Plant Science, 18, 334–343.

    Article  CAS  Google Scholar 

  • Gandía-Herrero, F., & García-Carmona, F. (2014). Escherichia coli protein YgiD produces the structural unit of plant pigments betalains: characterization of a prokaryotic enzyme with DOPA-extradiol-dioxygenase activity. Applied Microbiology and Biotechnology, 98, 1165–1174.

    Article  CAS  Google Scholar 

  • García-Cruz, L., Valle-Guadarrama, S., Salinas-Moreno, Y., & Joaquín-Cruz, E. (2013). Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) fruits. Plant Foods for Human Nutrition, 68, 403–410.

    Article  CAS  Google Scholar 

  • Gasztonyi, M. N., Daood, H., Hajos, M. T., & Biacs, P. (2001). Comparison of red beet (Beta vulgaris var conditiva) varieties on the basis of their pigment components. Journal of the Science of Food and Agriculture, 81, 932–933.

    Article  CAS  Google Scholar 

  • Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: natural plant pigments with potential application in functional foods. LWT-Food Science and Technology, 64, 645–649.

    Article  CAS  Google Scholar 

  • Georgiev, V. G., Weber, J., Kneschke, E., Denev, P. N., Bley, T., & Pavlov, A. I. (2010). Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods for Human Nutrition, 65, 105–111.

    Article  CAS  Google Scholar 

  • Gibbs, B., Kermasha, S., Alli, I., & Mulligan, C. (1999). Encapsulation in the food industry: A review. International Journal of Food Sciences and Nutrition, 50, 213–224.

    Article  CAS  Google Scholar 

  • Girod, P., & Zryd, J. (1991). Secondary metabolism in cultured red beet (Beta vulgaris L.) cells: differential regulation of betaxanthin and betacyanin biosynthesis. Plant Cell, Tissue and Organ Culture, 25, 1–12.

    Article  CAS  Google Scholar 

  • Gliszczyńska-Świgło, A., Szymusiak, H., & Malinowska, P. (2006). Betanin, the main pigment of red beet: molecular origin of its exceptionally high free radical-scavenging activity. Food Additives and Contaminants, 23, 1079–1087.

    Article  CAS  Google Scholar 

  • Goldman, I. L., & Navazio, J. P. (2003). History and breeding of table beet in the United States. Plant Breeding Reviews, 22, 357–388.

    Google Scholar 

  • Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35, 42–51.

    Article  CAS  Google Scholar 

  • Gonçalves, L. C. P., Tonelli, R. R., Bagnaresi, P., Mortara, R. A., Ferreira, A. G., & Bastos, E. L. (2013). A nature-inspired betalainic probe for live-cell imaging of Plasmodium-infected erythrocytes. PloS One, 8, e53874.

    Article  CAS  Google Scholar 

  • Goyeneche, R., Roura, S., Ponce, A., Vega-Gálvez, A., Quispe-Fuentes, I., Uribe, E., & Di Scala, K. (2015). Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. Journal of Functional Foods, 16, 256–264.

    Article  CAS  Google Scholar 

  • Granum, P. E. (2005). Bacillus cereus. Foodborne pathogens: microbiology and molecular biology, 409–419.

  • Granum, P. E., & Lund, T. (1997). Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 157, 223–228.

    Article  CAS  Google Scholar 

  • Guinebretière, M., Auger, S., Galleron, N., Contzen, M., De Sarrau, B., De Buyser, M., Lamberet, G., Fagerlund, A., Granum, P. E., & Lereclus, D. (2013). Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. International Journal of Systematic and Evolutionary Microbiology, 63, 31–40.

    Article  Google Scholar 

  • Guldiken, B., Toydemir, G., Nur Memis, K., Okur, S., Boyacioglu, D., & Capanoglu, E. (2016). Home-processed red beetroot (Beta vulgaris L.) products: changes in antioxidant properties and bioaccessibility. International Journal of Molecular Sciences, 17, 858.

    Article  CAS  Google Scholar 

  • Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429.

    Article  CAS  Google Scholar 

  • Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16, 33–50.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. (1999). The chemistry of free radicals and related ‘reactive species’. Free Radicals in Biology and Medicine, 3, 1–7.

    Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine (4th ed.). USA: Oxford University Press.

    Book  Google Scholar 

  • Halliwell, B., Murcia, M. A., Chirico, S., & Aruoma, O. I. (1995). Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science & Nutrition, 35, 7–20.

    Article  CAS  Google Scholar 

  • Hanlon, P. R., & Barnes, D. M. (2011). Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. Journal of Food Science, 76, C185–C192.

    Article  CAS  Google Scholar 

  • Herbach, K. M., Stintzing, F. C., & Carle, R. (2004). Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. Journal of Food Science, 69, C491–C498.

    Article  CAS  Google Scholar 

  • Herbach, K. M., Stintzing, F. C., & Carle, R. (2006). Betalain stability and degradation—structural and chromatic aspects. Journal of Food Science, 71, R-41–RR50.

    Article  CAS  Google Scholar 

  • Herrera-Hernández, M. G., Guevara-Lara, F., Reynoso-Camacho, R., & Guzmán-Maldonado, S. H. (2011). Effects of maturity stage and storage on cactus berry (Myrtillocactus geometrizans) phenolics, vitamin C, betalains and their antioxidant properties. Food Chemistry, 129, 1744–1750.

    Article  CAS  Google Scholar 

  • Hilou, A., Nacoulma, O. G., & Guiguemde, T. R. (2006). In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. Journal of Ethnopharmacology, 103, 236–240.

    Article  CAS  Google Scholar 

  • Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22, 273–292.

    Article  CAS  Google Scholar 

  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.

    Article  CAS  Google Scholar 

  • Huet, O., Harrois, A., & Duranteau, J. (2009). Oxidative stress and endothelial dysfunction during sepsis. In J. L. Vincent (Ed.), Yearbook of Intensive Care and Emergency Medicine 2009 (pp. 59–64). Germany: Springer-Verlag Berlin Heidelberg.

    Chapter  Google Scholar 

  • Iahnke, A. O. E. S., Costa, T. M. H., de Oliveira Rios, A., & Flôres, S. H. (2016). Antioxidant films based on gelatin capsules and minimally processed beet root (Beta vulgaris L. var. Conditiva) residues. Journal of Applied Polymer Science, 133, 43094.

  • Ignat, I., Volf, I., & Popa, V. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126, 1821–1835.

    Article  CAS  Google Scholar 

  • Inglesby, T. V., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., Hauer, J., McDade, J., Osterholm, M. T., & O’Toole, T. (1999). Anthrax as a biological weapon: medical and public health management. JAMA, 281, 1735–1745.

    Article  CAS  Google Scholar 

  • Inglesby, T. V., O’Toole, T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., Gerberding, J., Hauer, J., & Hughes, J. (2002). Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA, 287, 2236–2252.

    Article  Google Scholar 

  • Isabelle, M., Lee, B. L., Lim, M. T., Koh, W., Huang, D., & Ong, C. N. (2010). Antioxidant activity and profiles of common vegetables in Singapore. Food Chemistry, 120, 993–1003.

    Article  CAS  Google Scholar 

  • Jha, R., & Gupta, R. K. (2016). Development of energy drink containing Aegle marmelos, Rubia cordifolia, Phyllanthus emblica and Beta vulgaris and its phytochemical, nutritive and antimicrobial analysis. Journal of Pharmacognosy and Phytochemistry, 5, 186–193.

    Google Scholar 

  • Jiménez-Aguilar, D. M., López-Martínez, J. M., Hernández-Brenes, C., Gutiérrez-Uribe, J. A., & Welti-Chanes, J. (2015). Dietary fiber, phytochemical composition and antioxidant activity of Mexican commercial varieties of cactus pear. Journal of Food Composition and Analysis, 41, 66–73.

    Article  CAS  Google Scholar 

  • Jorgensen, J. H., & Turnidge, J. D. (2015). Susceptibility test methods: dilution and disk diffusion methods. In J. Jorgensen, M. Pfaller, K. Carroll, G. Funke, M. Landry, S. Richter, & D. Warnock (Eds.), Manual of Clinical Microbiology (11th ed., pp. 1253–1273). Washington, DC: American Society of Microbiology.

    Chapter  Google Scholar 

  • Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47, 3954–3962.

    Article  CAS  Google Scholar 

  • Kanner, J., Harel, S., & Granit, R. (2001). Betalains a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49, 5178–5185.

    Article  CAS  Google Scholar 

  • Kapoor, V. P., Katiyar, K., Pushpangadan, P., & Singh, N. (2008). Development of natural dye based sindoor. Natural Product Radiance, 7, 22–29.

    Google Scholar 

  • Kapperud, G., Gustavsen, S., Hellesnes, I., Hansen, A. H., Lassen, J., Hirn, J., Jahkola, M., Montenegro, M. A., & Helmuth, R. (1990). Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. Journal of Clinical Microbiology, 28, 2597–2601.

    CAS  Google Scholar 

  • Kchaou, W., Abbès, F., Mansour, R. B., Blecker, C., Attia, H., & Besbes, S. (2016). Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.) Food Chemistry, 194, 1048–1055.

    Article  CAS  Google Scholar 

  • Khalili, R. M. A., Norhayati, A. H., Rokiah, M. Y., Asmah, R., Nasir, M. M., & Muskinah, M. S. (2006). Proximate composition and selected mineral determination in organically grown red pitaya (Hylocereus sp.) Journal of Tropical Agriculture and Food Science, 34, 269–275.

    Google Scholar 

  • Khan, M. I. (2016). Stabilization of betalains: a review. Food Chemistry, 197, 1280–1285.

    Article  CAS  Google Scholar 

  • Khan, M. I., Harsha, P. S., Giridhar, P., & Ravishankar, G. A. (2012). Pigment identification, nutritional composition, bioactivity, and in vitro cancer cell cytotoxicity of Rivina humilis L. berries, potential source of betalains. LWT-Food Science and Technology, 47, 315–323.

    Article  CAS  Google Scholar 

  • Khanam, U. K. S., Oba, S., Yanase, E., & Murakami, Y. (2012). Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. Journal of Functional Foods, 4, 979–987.

    Article  CAS  Google Scholar 

  • Kim, H., Choi, H., Moon, J. Y., Kim, Y. S., Mosaddik, A., & Cho, S. K. (2011). Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. Journal of Food Science, 76, C38–C45.

    Article  CAS  Google Scholar 

  • Koochak, H., Seyyednejad, S. M., & Motamedi, H. (2010). Preliminary study on the antibacterial activity of some medicinal plants of Khuzestan (Iran). Asian Pacific Journal of Tropical Medicine, 3, 180–184.

    Article  CAS  Google Scholar 

  • Kotiranta, A., Lounatmaa, K., & Haapasalo, M. (2000). Epidemiology and pathogenesis of Bacillus cereus infections. Microbes and Infection, 2, 189–198.

    Article  CAS  Google Scholar 

  • Krochta, J. M., & Mulder-Johnston, D. E. (1997). Edible and biodegradable polymer films: challenges and opportunities. USA: Food technology.

    Google Scholar 

  • Kugler, F., Stintzing, F. C., & Carle, R. (2004). Identification of betalains from petioles of differently colored Swiss chard (Beta vulgaris L. ssp. cicla [L.] Alef. Cv. Bright Lights) by high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 52, 2975–2981.

    Article  CAS  Google Scholar 

  • Kugler, F., Stintzing, F. C., & Carle, R. (2007). Evaluation of the antioxidant capacity of betalainic fruits and vegetables. Journal of Applied Botany and Food Quality, 81, 69–76.

    CAS  Google Scholar 

  • Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry, 48, 5338–5342.

    Article  CAS  Google Scholar 

  • Kujala, T., Loponen, J., & Pihlaja, K. (2001). Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterisation. Zeitschrift fr Naturforschung C, 56, 343–348.

    CAS  Google Scholar 

  • Kujala, T. S., Vienola, M. S., Klika, K. D., Loponen, J. M., & Pihlaja, K. (2002). Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. European Food Research and Technology, 214, 505–510.

    Article  CAS  Google Scholar 

  • Kumar, C. G., & Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42, 9–27.

    Article  CAS  Google Scholar 

  • Kumar, S. S., Manoj, P., Shetty, N. P., Prakash, M., & Giridhar, P. (2015). Characterization of major betalain pigments-gomphrenin, betanin and isobetanin from Basella rubra L. fruit and evaluation of efficacy as a natural colourant in product (ice cream) development. Journal of Food Science and Technology, 52, 4994–5002.

    Article  CAS  Google Scholar 

  • Lange, W., Brandenburg, W. A., & Bock, T. S. D. (1999). Taxonomy and cultonomy of beet (Beta vulgaris L.) Botanical Journal of the Linnean Society, 130, 81–96.

    Article  Google Scholar 

  • Langsrud, S., Sidhu, M. S., Heir, E., & Holck, A. L. (2003). Bacterial disinfectant resistance—a challenge for the food industry. International Biodeterioration & Biodegradation, 51, 283–290.

    Article  CAS  Google Scholar 

  • Le Loir, Y., Baron, F., & Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics and Molecular Research, 2, 63–76.

    Google Scholar 

  • Leigh, R. A., Rees, T. a., Fuller, W. A., & Banfield, J. (1979). The location of acid invertase activity and sucrose in the vacuoles of storage roots of beetroot (Beta vulgaris). Biochemical Journal, 178, 539–547.

    Article  CAS  Google Scholar 

  • Leja, M., Kamińska, I., Kramer, M., Maksylewicz-Kaul, A., Kammerer, D., Carle, R., & Baranski, R. (2013). The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods for Human Nutrition, 68, 163–170.

    Article  CAS  Google Scholar 

  • Lin, J., & Tang, C. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101, 140–147.

    Article  CAS  Google Scholar 

  • Llesuy, S., Evelson, P., Gonzlez-Flecha, B., Peralta, J., Carreras, M. C., Poderoso, J. J., & Boveris, A. (1994). Oxidative stress in muscle and liver of rats with septic syndrome. Free Radical Biology and Medicine, 16, 445–451.

    Article  CAS  Google Scholar 

  • Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Reviews, 4, 118.

    Article  CAS  Google Scholar 

  • Lowes, D. A., Webster, N. R., Murphy, M. P., & Galley, H. F. (2013). Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. British Journal of Anaesthesia, 110, 472–480.

    Article  CAS  Google Scholar 

  • Lu, G., Edwards, C. G., Fellman, J. K., Mattinson, D. S., & Navazio, J. (2003). Biosynthetic origin of geosmin in red beets (Beta vulgaris L.) Journal of Agricultural and Food Chemistry, 51, 1026–1029.

    Article  CAS  Google Scholar 

  • Luis, A., Sandalio, L. M., Corpas, F. J., Palma, J. M., & Barroso, J. B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology, 141, 330–335.

    Article  CAS  Google Scholar 

  • Mabry, T. J., & Dreiding, A. S. (1968). The betalains. In T. J. Mabry, R. E. Alstom, & V. C. Runeckles (Eds.), Recent Advances in Phytochemistry (pp. 145–160). New York: Appleton-Centry-Croft.

    Google Scholar 

  • Macdonald, J., Galley, H. F., & Webster, N. R. (2003). Oxidative stress and gene expression in sepsis. British Journal of Anaesthesia, 90, 221–232.

    Article  CAS  Google Scholar 

  • Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release—a review. International Journal of Food Science & Technology, 41, 1–21.

    Article  CAS  Google Scholar 

  • Manohar, C. M., Kundgar, S. D. & Doble, M. (2016). Betanin immobilized LDPE as antimicrobial food wrapper. LWT-Food Science and Technology, In press.

  • Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the university of chemical technology and metallurgy, 40, 255–260.

    CAS  Google Scholar 

  • Martínez, L., Cilla, I., Beltrán, J. A., & Roncalés, P. (2006). Combined effect of modified atmosphere packaging and addition of rosemary (Rosmarinus officinalis), ascorbic acid, red beet root (Beta vulgaris), and sodium lactate and their mixtures on the stability of fresh pork sausages. Journal of Agricultural and Food Chemistry, 54, 4674–4680.

    Article  CAS  Google Scholar 

  • Martinez, R. M., Longhi-Balbinot, D. T., Zarpelon, A. C., Staurengo-Ferrari, L., Baracat, M. M., Georgetti, S. R., Sassonia, R. C., Verri Jr., W. A., & Casagrande, R. (2015). Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Archives of Pharmacal Research, 38, 494–504.

    Article  CAS  Google Scholar 

  • McCallum, L., Paine, S., Sexton, K., Dufour, M., Dyet, K., Wilson, M., Campbell, D., Bandaranayake, D., & Hope, V. (2013). An outbreak of Salmonella typhimurium phage type 42 associated with the consumption of raw flour. Foodborne Pathogens and Disease, 10, 159–164.

    Article  Google Scholar 

  • Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M., & Tauxe, R. V. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.

    Article  CAS  Google Scholar 

  • Merin, U., Gagel, S., Popel, G., Bernstein, S., & Rosenthal, I. (1987). Thermal degradation kinetics of prickly-pear-fruit red pigment. Journal of Food Science, 52, 485–486.

    Article  CAS  Google Scholar 

  • Merken, H. M., & Beecher, G. R. (2000). Measurement of food flavonoids by high-performance liquid chromatography: a review. Journal of Agricultural and Food Chemistry, 48, 577–599.

    Article  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  • Moreno, D. A., García-Viguera, C., Gil, J. I., & Gil-Izquierdo, A. (2008). Betalains in the era of global agri-food science, technology and nutritional health. Phytochemistry Reviews, 7, 261–280.

    Article  CAS  Google Scholar 

  • Mortensen, A. (2006). Carotenoids and other pigments as natural colorants. Pure and Applied Chemistry, 78, 1477–1491.

    Article  CAS  Google Scholar 

  • Moßhammer, M. R., Rohe, M., Stintzing, F. C., & Carle, R. (2007). Stability of yellow-orange cactus pear (Opuntia ficus-indica [L.] Mill. cv.‘Gialla’) betalains as affected by the juice matrix and selected food additives. European Food Research and Technology, 225, 21–32.

    Article  CAS  Google Scholar 

  • Moßhammer, M. R., Stintzing, F. C., & Carle, R. (2005). Development of a process for the production of a betalain-based colouring foodstuff from cactus pear. Innovative Food Science & Emerging Technologies, 6(2), 221–231.

    Article  CAS  Google Scholar 

  • Moussa-Ayoub, T. E., El-Samahy, S. K., Rohn, S., & Kroh, L. W. (2011). Flavonols, betacyanins content and antioxidant activity of cactus Opuntia macrorhiza fruits. Food Research International, 44, 2169–2174.

    Article  CAS  Google Scholar 

  • Munro, D. B., & Small, E. (1997). Vegetables of Canada. Ontario: NRC Research Press.

    Google Scholar 

  • Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054, 95–111.

    Article  CAS  Google Scholar 

  • Neelwarne, B., & Halagur, S. B. (2012). Red beet: an overview. In B. Neelwarne (Ed.), Red Beet Biotechnology: Food and Pharmaceutical Applications (pp. 1–43). New York: Springer.

    Chapter  Google Scholar 

  • Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4, 39–47.

    Article  CAS  Google Scholar 

  • Neil, K. P., Biggerstaff, G., MacDonald, J. K., Trees, E., Medus, C., Musser, K. A., Stroika, S. G., Zink, D., & Sotir, M. J. (2012). A novel vehicle for transmission of Escherichia coli O157: H7 to humans: multistate outbreak of E. coli O157: H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States, 2009. Clinical Infectious Diseases, 54, 511–518.

    Article  Google Scholar 

  • Nemzer, B., Pietrzkowski, Z., Spórna, A., Stalica, P., Thresher, W., Michałowski, T., & Wybraniec, S. (2011). Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chemistry, 127, 42–53.

    Article  CAS  Google Scholar 

  • Newell, D. G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., & Scheutz, F. (2010). Food-borne diseases—the challenges of 20years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139, S3–S15.

    Article  Google Scholar 

  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67, 593–656.

    Article  CAS  Google Scholar 

  • Nikaido, H., & Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiological Reviews, 49, 1–32.

    CAS  Google Scholar 

  • Nilsson, T. (1970). Studies into the pigments in beetroot (Beta vulgaris L. ssp. vulgaris var. rubra L.) Lantbrukshogskolans annaler, 36, 179–219.

    CAS  Google Scholar 

  • Ninfali, P., & Angelino, D. (2013). Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia, 89, 188–199.

    Article  CAS  Google Scholar 

  • Novakova, L., Matysova, L., & Solich, P. (2006). Advantages of application of UPLC in pharmaceutical analysis. Talanta, 68, 908–918.

    Article  CAS  Google Scholar 

  • Ohemeng, K. A., Schwender, C. F., Fu, K. P., & Barrett, J. F. (1993). DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorganic & Medicinal Chemistry Letters, 3, 225–230.

    Article  CAS  Google Scholar 

  • Oksuz, T., Surek, E., Tacer-Caba, Z., & Nilufer-Erdil, D. (2015). Phenolic contents and antioxidant activities of persimmon and red beet jams produced by sucrose impregnation. Food Science and Technology, 3, 1–8.

    Google Scholar 

  • Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: a review. Food Microbiology, 32, 1–19.

    Article  CAS  Google Scholar 

  • Osorio-Esquivel, O., Álvarez, V. B., Dorantes-Álvarez, L., & Giusti, M. M. (2011). Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Research International, 44, 2160–2168.

    Article  CAS  Google Scholar 

  • Oyen, L. P. A. (2004). Beta vulgaris L. In G. B. H. Grubben & O. A. Denton (Eds.), Plant Resources of Tropical Africa 2. Vegetables (pp. 110-113). Wageningen: PROTA Foundations.

  • Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cnovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.) LWT-Food Science and Technology, 68, 98–104.

    Article  CAS  Google Scholar 

  • Page, A. V., & Liles, W. C. (2013). Enterohemorrhagic Escherichia coli infections and the hemolytic-uremic syndrome. Medical Clinics of North America, 97, 681–695.

    Article  Google Scholar 

  • Pai, S. R., & D’Mello, P. (2004). Stability evaluation of beetroot colour in various pharmaceutical matrices. Indian Journal of Pharmaceutical Sciences, 66, 696–699.

    CAS  Google Scholar 

  • Pasch, J. H., & von Elbe, J. H. (1979). Betanine stability in buffered solutions containing organic acids, metal cations, antioxidants, or sequestrants. Journal of Food Science, 44, 72–75.

    Article  CAS  Google Scholar 

  • Pasch, J. H., Von Elbe, J. H., & Sell, R. J. (1975). Betalaines as colorants in dairy products. Journal of Milk and Food Technology (JMFT), 38, 25–28.

    Article  CAS  Google Scholar 

  • Pátkai, G., & Barta, J. (1996). Decomposition of betacyanins and betaxanthins by heat and pH changes. Food/Nahrung, 40, 267–270.

    Article  Google Scholar 

  • Pedreño, M. A., & Escribano, J. (2001). Correlation between antiradical activity and stability of betanine from Beta vulgaris L roots under different pH, temperature and light conditions. Journal of the Science of Food and Agriculture, 81, 627–631.

    Article  Google Scholar 

  • Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Van Impe, F., & Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science & Technology, 32, 128–141.

    Article  CAS  Google Scholar 

  • Pérez-Loredo, M. G., García-Ochoa, F., & Barragán-Huerta, B. E. (2016). Comparative analysis of betalain content in Stenocereus stellatus fruits and other cactus fruits using principal component analysis. International Journal of Food Properties, 19, 326–338.

    Article  CAS  Google Scholar 

  • Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Sciences, 4, 89–96.

    CAS  Google Scholar 

  • Piattelli, M. (1981). The betalains: structure, biosynthesis, and chemical taxonomy. The biochemistry of plants, 7, 557–575.

    CAS  Google Scholar 

  • Pieroni, A., Muenz, H., Akbulut, M., Başer, K. H. C., & Durmuşkahya, C. (2005). Traditional phytotherapy and trans-cultural pharmacy among Turkish migrants living in Cologne, Germany. Journal of Ethnopharmacology, 102, 69–88.

    Article  Google Scholar 

  • Pinchuk, I. V., Beswick, E. J., & Reyes, V. E. (2010). Staphylococcal enterotoxins. Toxins, 2, 2177–2197.

    Article  CAS  Google Scholar 

  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Nez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53, 2111–2117.

    Article  CAS  Google Scholar 

  • Powrie, W. D., & Fennema, O. (1963). Electrophoretic separation of beet pigments. Journal of Food Science, 28, 214–220.

    Article  CAS  Google Scholar 

  • Prauchner, C. A. (2016). Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns, In press.

  • Proteggente, A. R., Pannala, A. S., Paganga, G., Buren, L. v., Wagner, E., Wiseman, S., Put, F. V. D., Dacombe, C., & Rice-Evans, C. A. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36, 217–233.

    Article  CAS  Google Scholar 

  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373–380.

    Article  CAS  Google Scholar 

  • Račkauskienė, I., Pukalskas, A., Venskutonis, P. R., Fiore, A., Troise, A. D., & Fogliano, V. (2015). Effects of beetroot (Beta vulgaris) preparations on the Maillard reaction products in milk and meat-protein model systems. Food Research International, 70, 31–39.

    Article  CAS  Google Scholar 

  • Ramli, N. S., Ismail, P. & Rahmat, A. (2014). Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). The Scientific World Journal, 2014.

  • Rasooli, I. (2007). Food preservation—a biopreservative approach. Food, 1, 111–136.

    Google Scholar 

  • Rauha, J., Remes, S., Heinonen, M., Hopia, A., Khknen, M., Kujala, T., Pihlaja, K., Vuorela, H., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56, 3–12.

    Article  CAS  Google Scholar 

  • Reller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49, 1749–1755.

    Article  CAS  Google Scholar 

  • Riedel, S. (2005). Anthrax: a continuing concern in the era of bioterrorism. Proceedings (Baylor University. Medical Center), 18, 234–43.

  • Rivera, J., Cordero, R. J., Nakouzi, A. S., Frases, S., Nicola, A. & Casadevall, A. (2010). Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proceedings of the National Academy of Sciences, 107, 19002–19007.

  • Rodriguez, E. B., Vidallon, M. L. P., Mendoza, D. J. R., & Reyes, C. T. (2016). Health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by carbohydrate encapsulation. Journal of the Science of Food and Agriculture, 96, 4679–4689.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Raybaudi-Massilia, R. M., Soliva-Fortuny, R. C., Avena-Bustillos, R. J., McHugh, T. H., & Martín-Belloso, O. (2007). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biology and Technology, 45, 254–264.

    Article  CAS  Google Scholar 

  • Rosenquist, H., Smidt, L., Andersen, S. R., Jensen, G. B., & Wilcks, A. (2005). Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiology Letters, 250, 129–136.

    Article  CAS  Google Scholar 

  • Rumbaoa, R. G. O., Cornago, D. F., & Geronimo, I. M. (2009a). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22, 546–550.

    Article  CAS  Google Scholar 

  • Rumbaoa, R. G. O., Cornago, D. F., & Geronimo, I. M. (2009b). Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chemistry, 113, 1133–1138.

    Article  CAS  Google Scholar 

  • Sainath, M., Kumar, K. S., & Babu, K. A. (2016). Formulation and evaluation of herbal lipstic. International Journal Of Advanced Research In Medical & Pharmaceutical Sciences (IJARMPS), 2058–60.

  • Santas, J., Almajano, M. P., & Carbó, R. (2010). Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. International journal of food science & technology, 45, 403–409.

    Article  CAS  Google Scholar 

  • Sawicki, T., Bączek, N., & Wiczkowski, W. (2016). Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. Journal of Functional Foods, 27, 249–261.

    Article  CAS  Google Scholar 

  • Scotter, M. J. (2011). Methods for the determination of European Union-permitted added natural colours in foods: a review. Food Additives and Contaminants, 28, 527–596.

    Article  CAS  Google Scholar 

  • Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3, 91–100.

    CAS  Google Scholar 

  • Shahid, M., & Mohammad, F. (2013). Recent advancements in natural dye applications: a review. Journal of Cleaner Production, 53, 310–331.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Zhong, Y. (2010). Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology, 112, 930–940.

    Article  CAS  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.

  • Shyamala, B. N., & Jamuna, P. (2010). Nutritional content and antioxidant properties of pulp waste from Daucus carota and Beta vulgaris. Malaysian Journal of Nutrition, 16, 397–408.

    Google Scholar 

  • Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82, 291–295.

    Article  CAS  Google Scholar 

  • Sies, H. (2013). Oxidative stress. Orlando: Elsevier.

    Google Scholar 

  • Šimon, P., Drdák, M., & Altamirano, R. C. (1993). Influence of water activity on the stability of betanin in various water/alcohol model systems. Food Chemistry, 46, 155–158.

    Article  Google Scholar 

  • Singh, B., & Hathan, B. S. (2014). Chemical composition, functional properties and processing of beetroot—a review. International Journal of Scientific & Engineering Research, 5, 679–684.

    Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Siripatrawan, U., & Noipha, S. (2012). Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocolloids, 27, 102–108.

    Article  CAS  Google Scholar 

  • Slatnar, A., Stampar, F., Veberic, R., & Jakopic, J. (2015). HPLC-MSn identification of betalain profile of different beetroot (Beta vulgaris L. ssp. vulgaris) parts and cultivars. Journal of Food Science, 80, C1952–C1958.

    Article  CAS  Google Scholar 

  • Slavov, A., Karagyozov, V., Denev, P., Kratchanova, M., & Kratchanov, C. (2013). Antioxidant activity of red beet juices obtained after microwave and thermal pretreatments. Czech Journal of Food Science, 31, 139–147.

    CAS  Google Scholar 

  • Smid, E. J., & Gorris, L. G. (1999). Natural antimicrobials for food preservation. In M. S. Rahman (Ed.), Handbook of food preservation (pp. 285–308). USA: Marcel Dekker.

    Google Scholar 

  • Smirnoff, N. (1996). Botanical briefing: the function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661–669.

    Article  CAS  Google Scholar 

  • Smith, A. H., Zoetendal, E., & Mackie, R. I. (2005). Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microbial Ecology, 50, 197–205.

    Article  CAS  Google Scholar 

  • Snow, L. F. (1983). Traditional health beliefs and practices among lower class black Americans. Western Journal of Medicine, 139, 820–828.

    CAS  Google Scholar 

  • Sohal, R. S., & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science (New York, N.Y.), 273, 59–63.

    Article  CAS  Google Scholar 

  • Solar, A., Colarič, M., Usenik, V., & Stampar, F. (2006). Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.) Plant Science, 170, 453–461.

    Article  CAS  Google Scholar 

  • Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology, 18, 84–95.

    Article  CAS  Google Scholar 

  • Spencer, R. C. (2003). Bacillus anthracis. Journal of Clinical Pathology, 56, 182–187.

    Article  CAS  Google Scholar 

  • Sreeramulu, D., & Raghunath, M. (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Research International, 43, 1017–1020.

    Article  CAS  Google Scholar 

  • Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30, 3268–3295.

    Article  CAS  Google Scholar 

  • Stapleton, P. D., Shah, S., Ehlert, K., Hara, Y., & Taylor, P. W. (2007). The β-lactam-resistance modifier (−)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiology, 153, 2093–2103.

    Article  CAS  Google Scholar 

  • Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15, 19–38.

    Article  CAS  Google Scholar 

  • Stintzing, F. C., & Carle, R. (2007a). 2.4 N-heterocyclic pigments: betalains. In C. Socaciu (Ed.), Food colorants: Chemical and functional properties (pp. 87–99). USA: CRC press.

    Google Scholar 

  • Stintzing, F. C., & Carle, R. (2007b). Betalains–emerging prospects for food scientists. Trends in Food Science & Technology, 18, 514–525.

    Article  CAS  Google Scholar 

  • Stintzing, F. C., Conrad, J., Klaiber, I., Beifuss, U., & Carle, R. (2004). Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy. Phytochemistry, 65, 415–422.

    Article  CAS  Google Scholar 

  • Stintzing, F. C., Schieber, A., & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology, 216, 303–311.

    Article  CAS  Google Scholar 

  • Stintzing, F. C., Trichterborn, J., & Carle, R. (2006). Characterisation of anthocyanin-betalain mixtures for food colouring by chromatic and HPLC-DAD-MS analyses. Food Chemistry, 94, 296–309.

    Article  CAS  Google Scholar 

  • Strack, D., Steglich, W., & Wray, V. (1993). Betalains. Methods in plant biochemistry, 8, 421.

    CAS  Google Scholar 

  • Strack, D., Vogt, T., & Schliemann, W. (2003). Recent advances in betalain research. Phytochemistry, 62, 247–269.

    Article  CAS  Google Scholar 

  • Svenson, J., Smallfield, B. M., Joyce, N. I., Sansom, C. E., & Perry, N. B. (2008). Betalains in red and yellow varieties of the Andean tuber crop ulluco (Ullucus tuberosus). Journal of Agricultural and Food Chemistry, 56, 7730–7737.

    Article  CAS  Google Scholar 

  • Swarna, J., Lokeswari, T. S., Smita, M., & Ravindhran, R. (2013a). Characterisation and determination of in vitro antioxidant potential of betalains from Talinum triangulare (Jacq.) Willd. Food Chemistry, 141, 4382–4390.

    Article  CAS  Google Scholar 

  • Swartz, M. N. (2001). Recognition and management of anthrax—an update. New England Journal of Medicine, 345, 1621–1626.

    Article  CAS  Google Scholar 

  • Swartz, M. E. (2005). UPLC™: an introduction and review. Journal of Liquid Chromatography & Related Technologies, 28, 1253–1263.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733–749.

    Article  CAS  Google Scholar 

  • Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380–388.

    Article  CAS  Google Scholar 

  • Tauxe, R. V. (1997). Emerging foodborne diseases: an evolving public health challenge. Emerging Infectious Diseases, 3, 425–434.

    Article  CAS  Google Scholar 

  • Tesoriere, L., Allegra, M., Butera, D., & Livrea, M. A. (2004). Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. The American Journal of Clinical Nutrition, 80, 941–945.

    CAS  Google Scholar 

  • Tesoriere, L., Butera, D., D’arpa, D., Di Gaudio, F., Allegra, M., Gentile, C., & Livrea, M. A. (2003). Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radical Research, 37, 689–696.

    Article  CAS  Google Scholar 

  • Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14, 71–78.

    Article  CAS  Google Scholar 

  • Tran, T. N., Athanassiou, A., Basit, A., & Bayer, I. S. (2017). Starch-based bio-elastomers functionalized with red beetroot natural antioxidant. Food Chemistry, 216, 324–333.

    Article  CAS  Google Scholar 

  • Tumbas Šaponjac, V., Čanadanović-Brunet, J., Ćetković, G., Jakišić, M., Djilas, S., Vulić, J., & Stajčić, S. (2016). Encapsulation of beetroot pomace extract: RSM optimization, storage and gastrointestinal stability. Molecules, 21, 584.

    Article  CAS  Google Scholar 

  • Tyszka-Czochara, M., Pasko, P., Zagrodzki, P., Gajdzik, E., Wietecha-Posluszny, R., & Gorinstein, S. (2016). Selenium supplementation of amaranth sprouts influences betacyanin content and improves anti-inflammatory properties via NFκB in murine RAW 264.7 macrophages. Biological Trace Element Research, 169, 320–330.

    Article  CAS  Google Scholar 

  • Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7, 65–74.

    Article  CAS  Google Scholar 

  • Vaara, M. (1992). Agents that increase the permeability of the outer membrane. Microbiological Reviews, 56, 395–411.

    CAS  Google Scholar 

  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44–84.

    Article  CAS  Google Scholar 

  • Valls, J., Milln, S., Mart, M. P., Borrs, E., & Arola, L. (2009). Advanced separation methods of food anthocyanins, isoflavones and flavanols. Journal of Chromatography A, 1216, 7143–7172.

    Article  CAS  Google Scholar 

  • Van Ert, M. N., Easterday, W. R., Huynh, L. Y., Okinaka, R. T., Hugh-Jones, M. E., Ravel, J., Zanecki, S. R., Pearson, T., Simonson, T. S., & U’Ren, J. M. (2007). Global genetic population structure of Bacillus anthracis. PloS One, 2, e461.

    Article  CAS  Google Scholar 

  • Velićanski, A. S., Cvetković, D. D., Markov, S. L., Vulić, J. J., & Djilas, S. M. (2011). Antibacterial activity of Beta vulgaris L. pomace extract. APTEFF, 42, 263–269.

    Article  CAS  Google Scholar 

  • Vèronique, C. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.

    Article  CAS  Google Scholar 

  • Vilas-Boas, G. T., Peruca, A., & Arantes, O. (2007). Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canadian Journal of Microbiology, 53, 673–687.

    Article  CAS  Google Scholar 

  • Vincent, K. R., & Scholz, R. G. (1978). Separation and quantification of red beet betacyanins and betaxanthins by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 26, 812–816.

    Article  CAS  Google Scholar 

  • Vinson, J. A., Hao, Y., Su, X., & Zubik, L. (1998). Phenol antioxidant quantity and quality in foods: vegetables. Journal of Agricultural and Food Chemistry, 46, 3630–3634.

    Article  CAS  Google Scholar 

  • Vulić, J., Čanadanović-Brunet, J., Ćetković, G., Tumbas, V., Djilas, S., Četojević-Simin, D., & Čanadanović, V. (2012). Antioxidant and cell growth activities of beet root pomace extracts. Journal of Functional Foods, 4, 670–678.

    Article  CAS  Google Scholar 

  • Vulić, J. J., Ćebović, T. N., Čanadanović, V. M., Ćetković, G. S., Djilas, S. M., Čanadanović-Brunet, J. M., Velićanski, A. S., Cvetković, D. D., & Tumbas, V. T. (2013). Antiradical, antimicrobial and cytotoxic activities of commercial beetroot pomace. Food & Function, 4, 713–721.

    Article  CAS  Google Scholar 

  • Vulić, J. J., Ćebović, T. N., Čanadanović-Brunet, J. M., Ćetković, G. S., Čanadanović, V. M., Djilas, S. M., & Šaponjac, V. T. T. (2014). In vivo and in vitro antioxidant effects of beetroot pomace extracts. Journal of Functional Foods, 6, 168–175.

    Article  CAS  Google Scholar 

  • Wells, J. G., Shipman, L. D., Greene, K. D., Sowers, E. G., Green, J. H., Cameron, D. N., Downes, F. P., Martin, M. L., Griffin, P. M., & Ostroff, S. M. (1991). Isolation of Escherichia coli serotype O157: H7 and other Shiga-like-toxin-producing E. coli from dairy cattle. Journal of Clinical Microbiology, 29, 985–989.

    CAS  Google Scholar 

  • Wen, A., Delaquis, P., Stanich, K., & Toivonen, P. (2003). Antilisterial activity of selected phenolic acids. Food Microbiology, 20, 305–311.

    Article  CAS  Google Scholar 

  • Woo, K. K., Ngou, F. H., Ngo, L. S., Soong, W. K., & Tang, P. Y. (2011). Stability of betalain pigment from red dragon fruit (Hylocereus polyrhizus). American Journal of Food Technology, 6, 140–148.

    Article  Google Scholar 

  • Wrolstad, R. E., & Culver, C. A. (2012). Alternatives to those artificial FD&C food colorants. Annual Review of Food Science and Technology, 3, 59–77.

    Article  CAS  Google Scholar 

  • Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., Höglinger, O., & Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46–55.

    Article  CAS  Google Scholar 

  • Wu, L., Hsu, H., Chen, Y., Chiu, C., Lin, Y., & Ho, J. A. (2006). Antioxidant and antiproliferative activities of red pitaya. Food Chemistry, 95, 319–327.

    Article  CAS  Google Scholar 

  • Wuthrich, K. (1986). NMR of proteins and nucleic acids. USA: Wiley.

    Google Scholar 

  • Wybraniec, S. (2005). Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. Journal of Agricultural and Food Chemistry, 53, 3483–3487.

    Article  CAS  Google Scholar 

  • Yang, J., Meyers, K. J., van der Heide, J., & Liu, R. H. (2004). Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. Journal of Agricultural and Food Chemistry, 52, 6787–6793.

    Article  CAS  Google Scholar 

  • Yeung, M. (2016). Microbial forensics in food safety. Microbiology spectrum, 4.

  • Yu, H., & Bruno, J. G. (1996). Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Applied and Environmental Microbiology, 62, 587–592.

    CAS  Google Scholar 

  • Zamudio-Flores, P. B., Ochoa-Reyes, E., Ornelas-Paz, J. D. J., Aparicio-Saguiln, A., Vargas-Torres, A., Bello-Perez, L. A., Rubio-Ros, A., & Crdenas-Flix, R. G. (2015). Effect of storage time on physicochemical and textural properties of sausages covered with oxidized banana starch film with and without betalains. CyTA-Journal of Food, 13, 456–463.

    Article  CAS  Google Scholar 

  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.

    Article  CAS  Google Scholar 

  • Zrÿd, J. P., & Christinet, L. (2009). Betalains. In K. Davies (Ed.), Annual plant reviews, volume 14, plant pigments and their manipulation (pp. 185–213). Canada and USA: CRC press.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Su-Ling Brooks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Brooks, M.SL. Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—a Critical Review. Food Bioprocess Technol 11, 17–42 (2018). https://doi.org/10.1007/s11947-017-1942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1942-z

Keywords

Navigation