Skip to main content

Advertisement

Log in

Heart Failure with Preserved Ejection Fraction and Cardiomyopathy: an Under-recognized Complication of Systemic Sclerosis

  • Heart Failure (W Tang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure with preserved ejection fraction (HFpEF) and diastolic dysfunction are major sequelae of primary cardiac disease in patients with systemic sclerosis (SSc) and contribute to increased mortality in this population.

Recent Findings

Studies of animal models of SSc and human tissue samples indicate that the pathophysiology underlying these conditions involves microvascular dysfunction, cardiomyocyte apoptosis, and replacement fibrosis. Diagnostic recommendations for HFpEF in SSc include clinical examination and screening with laboratory studies and cardiac imaging to detect diastolic dysfunction early in the disease course. Management of HFpEF in this population does not significantly differ from general HFpEF guidelines. It is focused on symptomatic management of volume status and treatment of underlying SSc with immune-modulating therapies.

Summary

Although cardiac disease is a major cause of mortality in patients with SSc, current treatments are lacking. There is a great need for novel therapeutics targeting the underlying pathophysiology in SSc to inhibit or reverse myocardial fibrosis, thus preventing cardiac remodeling and dysfunction in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–99. A detailed review about systemic sclerosis/scleroderma detailing the presentation, differential diagnosis, diagnostic criteria, pathophysiology, and management of SSc and associated complications.

  2. Bergamasco A, Hartmann N, Wallace L, Verpillat P. Epidemiology of systemic sclerosis and systemic sclerosis-associated interstitial lung disease. Clin Epidemiol. 2019;11:257–73.

    PubMed  PubMed Central  Google Scholar 

  3. Tyndall AJ, Bannert B, Vonk M, Airò P, Cozzi F, Carreira PE, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010;69:1809–15.

    PubMed  Google Scholar 

  4. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 Classification criteria for systemic sclerosis: an American college of rheumatology/european league against rheumatism collaborative initiative. Arthritis Rheum. 2013;65:2737–47.

    PubMed  PubMed Central  Google Scholar 

  5. Jordan S, Maurer B, Toniolo M, Michel B, Distler O. Performance of the new ACR/EULAR classification criteria for systemic sclerosis in clinical practice. Rheumatology (Oxford). 2015;54:1454–8.

    Google Scholar 

  6. Perelas A, Silver RM, Arrossi AV, Highland KB. Systemic sclerosis-associated interstitial lung disease. Lancet Respir Med. 2020;8:304–20.

    CAS  PubMed  Google Scholar 

  7. • Bissell L-A, Md Yusof MY, Buch MH. Primary myocardial disease in scleroderma-a comprehensive review of the literature to inform the UK Systemic Sclerosis Study Group cardiac working group. Rheumatology (Oxford). 2017;56:882–95. A review of cardiac disease in SSc to inform the UK Systemic Sclerosis Study Group to develop best practices for management of myocardial involvement in SSc.

  8. Rubio-Rivas M, Corbella X, Guillén-Del-Castillo A, Tolosa Vilella C, Colunga Argüelles D, Argibay A, et al. Spanish scleroderma risk score (RESCLESCORE) to predict 15-year all-cause mortality in scleroderma patients at the time of diagnosis based on the RESCLE cohort: derivation and internal validation. Autoimmun Rev. 2020;19:102507.

    PubMed  Google Scholar 

  9. Mani P, Gonzalez D, Chatterjee S, Faulx MD. Cardiovascular complications of systemic sclerosis: what to look for. Clevel Clin J Med. 2019;86:685–95.

    Google Scholar 

  10. •• Prasada S, Rivera A, Nishtala A, Pawlowski AE, Sinha A, Bundy JD, et al. Differential associations of chronic inflammatory diseases with incident heart failure. J Am Coll Cardiol HF 2020; Available from: http://heartfailure.onlinejacc.org/content/early/2020/04/07/j.jchf.2019.11.013. A study of heart failure in chronic inflammatory diseases indicating an increased risk of HF in patients with SSc, systemic lupus erythematosus, and rheumatoid arthritis not attributable to other cardiac risk factors.

  11. Nihtyanova SI, Schreiber BE, Ong VH, Rosenberg D, Moinzadeh P, Coghlan JG, et al. Prediction of pulmonary complications and long-term survival in systemic sclerosis. Arthritis Rheumatol. 2014;66:1625–35.

    PubMed  Google Scholar 

  12. Avouac J, Airò P, Meune C, Beretta L, Dieude P, Caramaschi P, et al. Prevalence of pulmonary hypertension in systemic sclerosis in European Caucasians and metaanalysis of 5 studies. J Rheumatol. 2010;37:2290–8.

    PubMed  Google Scholar 

  13. Chatterjee S. Pulmonary hypertension in systemic sclerosis. Semin Arthritis Rheum. 2011;41:19–37.

    PubMed  Google Scholar 

  14. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1801913.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Launay D, Sobanski V, Hachulla E, Humbert M. Pulmonary hypertension in systemic sclerosis: different phenotypes. Eur Respir Rev. 2017;26:170056.

    PubMed  Google Scholar 

  16. Coghlan JG, Denton CP, Grünig E, Bonderman D, Distler O, Khanna D, et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis. 2014;73:1340–9.

    PubMed  Google Scholar 

  17. Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, et al. Diagnosis of pulmonary hypertension. Eur Respir J. 2019;53:1801904.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaisson NF, Hassoun PM. Systemic sclerosis-associated pulmonary arterial hypertension. Chest. 2013;144:1346–56.

    PubMed  PubMed Central  Google Scholar 

  19. Fisher MR, Mathai SC, Champion HC, Girgis RE, Housten-Harris T, Hummers L, et al. Clinical differences between idiopathic and scleroderma-related pulmonary hypertension. Arthritis Rheum. 2006;54:3043–50.

    PubMed  Google Scholar 

  20. • Fox BD, Shimony A, Langleben D, Hirsch A, Rudski L, Schlesinger R, et al. High prevalence of occult left heart disease in scleroderma-pulmonary hypertension. Eur Respir J. 2013;42:1083–91. Study demonstrating significant prevalence of post-capillary pulmonary hypertension among SSc patients with PH.

  21. •• Bourji KI, Kelemen BW, Mathai SC, Damico RL, Kolb TM, Mercurio V, et al. Poor survival in patients with scleroderma and pulmonary hypertension due to heart failure with preserved ejection fraction. Pulm Circ. 2017;7:409–20. Study demonstrating increased risk of death in SSc patients with PH and HFpEF compared to those with PAH when adjusting for hemodynamic factors.

  22. Tennøe AH, Murbræch K, Andreassen JC, Fretheim H, Midtvedt Ø, Garen T, et al. Systolic dysfunction in systemic sclerosis: prevalence and prognostic implications. ACR Open Rheumatol. 2019;1:258–66.

    PubMed  PubMed Central  Google Scholar 

  23. • Mukherjee M, Chung S-E, Ton VK, Tedford RJ, Hummers LK, Wigley FM, et al. Unique abnormalities in right ventricular longitudinal strain in systemic sclerosis patients. Circ Cardiovasc Imaging. 2016;9:e003792. Evaluation of occult RV involvement in SSc, assessed by speckle-derived strain in echocardiographic imaging.

  24. Ciurzyński M, Bienias P, Lichodziejewska B, Szewczyk A, Glińska-Wielochowska M, Jankowski K, et al. Assessment of left and right ventricular diastolic function in patients with systemic sclerosis. Kardiol Pol. 2008;66:269–76 (discussion 277–278).

    PubMed  Google Scholar 

  25. Meune C, Avouac J, Wahbi K, Cabanes L, Wipff J, Mouthon L, et al. Cardiac involvement in systemic sclerosis assessed by tissue-Doppler echocardiography during routine care: a controlled study of 100 consecutive patients. Arthritis Rheum. 2008;58:1803–9.

    PubMed  Google Scholar 

  26. Plazak W, Kopec G, Tomkiewicz-Pajak L, Rubis P, Dziedzic H, Suchon E, et al. Heart structure and function in patients with generalized autoimmune diseases: echocardiography with tissue Doppler study. Acta Cardiol. 2011;66:159–65.

    PubMed  Google Scholar 

  27. •• Tennøe AH, Murbræch K, Andreassen JC, Fretheim H, Garen T, Gude E, et al. Left ventricular diastolic dysfunction predicts mortality in patients with systemic sclerosis. J Am Coll Cardiol. 2018;72:1804–13. Study indicating high prevalence of diastolic dysfunction in SSc, and association between diastolic dysfunction and increased mortality in these patients.

  28. Faludi R, Költo G, Bartos B, Csima G, Czirják L, Komócsi A. Five-year follow-up of left ventricular diastolic function in systemic sclerosis patients: determinants of mortality and disease progression. Semin Arthritis Rheum. 2014;44:220–7.

    PubMed  Google Scholar 

  29. Hinchcliff M, Desai CS, Varga J, Shah SJ. Prevalence, prognosis, and factors associated with left ventricular diastolic dysfunction in systemic sclerosis. Clin Exp Rheumatol. 2012;30:S30–7.

    PubMed  PubMed Central  Google Scholar 

  30. Meune C, Khanna D, Aboulhosn J, Avouac J, Kahan A, Furst DE, et al. A right ventricular diastolic impairment is common in systemic sclerosis and is associated with other target-organ damage. Semin Arthritis Rheum. 2016;45:439–45.

    PubMed  Google Scholar 

  31. Mohameden M, Vashisht P, Sharman T. Scleroderma and primary myocardial disease. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: http://www.ncbi.nlm.nih.gov/books/NBK557686/

  32. Allanore Y, Meune C. Primary myocardial involvement in systemic sclerosis: evidence for a microvascular origin. Clin Exp Rheumatol. 2010;28:S48-53.

    CAS  PubMed  Google Scholar 

  33. West SG, Killian PJ, Lawless OJ. Association of myositis and myocarditis in progressive systemic sclerosis. Arthritis Rheum. 1981;24:662–8.

    CAS  PubMed  Google Scholar 

  34. Kerr LD, Spiera H. Myocarditis as a complication in scleroderma patients with myositis. Clin Cardiol. 1993;16:895–9.

    CAS  PubMed  Google Scholar 

  35. Lambova S. Cardiac manifestations in systemic sclerosis. World J Cardiol. 2014;6:993–1005.

    PubMed  PubMed Central  Google Scholar 

  36. Bulkley BH, Ridolfi RL, Salyer WR, Hutchins GM. Myocardial lesions of progressive systemic sclerosis. A cause of cardiac dysfunction. Circulation. 1976;53:483–90.

    CAS  PubMed  Google Scholar 

  37. Follansbee WP, Miller TR, Curtiss EI, Orie JE, Bernstein RL, Kiernan JM, et al. A controlled clinicopathologic study of myocardial fibrosis in systemic sclerosis (scleroderma). J Rheumatol. 1990;17:656–62.

    CAS  PubMed  Google Scholar 

  38. Plastiras SC, Moutsopoulos HM. Arrhythmias and conduction disturbances in autoimmune rheumatic disorders. Arrhythm & Electrophisiol Rev. 2021;10:17–25.

    Google Scholar 

  39. Seferović PM, Ristić AD, Maksimović R, Simeunović DS, Ristić GG, Radovanović G, et al. Cardiac arrhythmias and conduction disturbances in autoimmune rheumatic diseases. Rheumatology (Oxford). 2006;45(Suppl 4):iv39–42.

    Google Scholar 

  40. •• De Luca G, Campochiaro C, De Santis M, Sartorelli S, Peretto G, Sala S, et al. Systemic sclerosis myocarditis has unique clinical, histological and prognostic features: a comparative histological analysis. Rheumatology (Oxford). 2020;59:2523 Evaluation of histological and clinical characteristics of patients with biopsy-proven, SSc-associated myocarditis.

  41. Manetti M, Milia AF, Guiducci S, Romano E, Matucci-Cerinic M, Ibba-Manneschi L. Progressive loss of lymphatic vessels in skin of patients with systemic sclerosis. J Rheumatol. 2011;38:297–301.

    PubMed  Google Scholar 

  42. •• Rossitto G, Mary S, McAllister C, Neves KB, Haddow L, Rocchiccioli JP, et al. Reduced lymphatic reserve in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2020;76:2817–29. Study of lymphatic microvascular changes in patients with HFpEF, indicating that reduced lymphatic preserve may contribute to aberrant fluid homeostasis in these patients.

  43. • Venalis P, Kumánovics G, Schulze-Koops H, Distler A, Dees C, Zerr P, et al. Cardiomyopathy in murine models of systemic sclerosis. Arthritis & Rheumatology (Hoboken, NJ). 2015;67:508–16. Review of the phenotypes and relevant mechanisms of cardiomyopathy in mouse models of SSc.

  44. Eferl R, Hasselblatt P, Rath M, Popper H, Zenz R, Komnenovic V, et al. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. PNAS. 2008;105:10525–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maurer B, Distler JHW, Distler O. The Fra-2 transgenic mouse model of systemic sclerosis. Vasc Pharmacol. 2013;58:194–201.

    CAS  Google Scholar 

  46. • Hsu S, Kokkonen-Simon KM, Kirk JA, Kolb TM, Damico RL, Mathai SC, et al. Right ventricular myofilament functional differences in humans with systemic sclerosis-associated versus idiopathic pulmonary arterial hypertension. Circulation. 2018;137:2360–70. Evaluation of sarcomere function in patients with SSc-PAH compared to idiopathic PAH, indicating occult RV myocardial dysfunction in SSc.

  47. Mahler M, Hudson M, Bentow C, Roup F, Beretta L, Pilar Simeón C, et al. Autoantibodies to stratify systemic sclerosis patients into clinically actionable subsets. Autoimmun Rev. 2020;19:102583.

    CAS  PubMed  Google Scholar 

  48. Hesselstrand R, Scheja A, Shen GQ, Wiik A, Akesson A. The association of antinuclear antibodies with organ involvement and survival in systemic sclerosis. Rheumatology (Oxford). 2003;42:534–40.

    CAS  Google Scholar 

  49. Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol. 1998;141:321–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. • Kill A, Tabeling C, Undeutsch R, Kühl AA, Günther J, Radic M, et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther. 2014;16:R29. Investigation of the presence and pathogenic function of anti-angiotensin II type 1 and endothelin-1 type A receptor autoantibodies in SSc.

  51. Riemekasten G, Philippe A, Näther M, Slowinski T, Müller DN, Heidecke H, et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis. 2011;70:530–6.

    CAS  PubMed  Google Scholar 

  52. Ryabkova VA, Shubik YV, Erman MV, Churilov LP, Kanduc D, Shoenfeld Y. Lethal immunoglobulins: autoantibodies and sudden cardiac death. Autoimmun Rev. 2019;18:415–25.

    CAS  PubMed  Google Scholar 

  53. Myers JM, Fairweather D, Huber SA, Cunningham MW. Autoimmune myocarditis, valvulitis, and cardiomyopathy. Curr Protoc Immunol. 2013. https://doi.org/10.1002/0471142735.im1514s101.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nagatomo Y, Tang WHW. Autoantibodies and cardiovascular dysfunction: cause or consequence? Curr Heart Fail Rep. 2014;11:500–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sulli A, Ghio M, Bezante GP, Deferrari L, Craviotto C, Sebastiani V, et al. Blunted coronary flow reserve in systemic sclerosis. Rheumatology (Oxford). 2004;43:505–9.

    CAS  Google Scholar 

  56. Kahan A, Nitenberg A, Foult JM, Amor B, Menkes CJ, Devaux JY, et al. Decreased coronary reserve in primary scleroderma myocardial disease. Arthritis Rheum. 1985;28:637–46.

    CAS  PubMed  Google Scholar 

  57. Valentini G, Vitale DF, Giunta A, Maione S, Gerundo G, Arnese M, et al. Diastolic abnormalities in systemic sclerosis: evidence for associated defective cardiac functional reserve. Ann Rheum Dis. 1996;55:455–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zanatta E, Famoso G, Boscain F, Montisci R, Pigatto E, Polito P, et al. Nailfold avascular score and coronary microvascular dysfunction in systemic sclerosis: a newsworthy association. Autoimmun Rev. 2019;18:177–83.

    PubMed  Google Scholar 

  59. Faccini A, Agricola E, Oppizzi M, Margonato A, Galderisi M, Sabbadini MG, et al. Coronary microvascular dysfunction in asymptomatic patients affected by systemic sclerosis - limited vs. diffuse form. Circ J. 2015;79:825–9.

    PubMed  Google Scholar 

  60. • Stronati G, Manfredi L, Ferrarini A, Zuliani L, Fogante M, Schicchi N, et al. Subclinical progression of systemic sclerosis-related cardiomyopathy. Eur J Prev Cardiol. 2020;27:1876. Evaluation of subclinical cardiac involvement in SSc patients via speckle-tracking-derived global longitudinal strain echocardiography.

  61. Mavrogeni SI, Schwitter J, Gargani L, Pepe A, Monti L, Allanore Y, et al. Cardiovascular magnetic resonance in systemic sclerosis: “Pearls and pitfalls.” Semin Arthritis Rheum. 2017;47:79–85.

    PubMed  Google Scholar 

  62. Rangarajan V, Matiasz R, Freed BH. Cardiac complications of systemic sclerosis and management: recent progress. Curr Opin Rheumatol. 2017;29:574–84.

    PubMed  Google Scholar 

  63. Guerra F, Stronati G, Fischietti C, Ferrarini A, Zuliani L, Pomponio G, et al. Global longitudinal strain measured by speckle tracking identifies subclinical heart involvement in patients with systemic sclerosis. Eur J Prev Cardiol. 2018;25:1598–606.

    PubMed  Google Scholar 

  64. Mavrogeni S, Sfikakis PP, Gialafos E, Bratis K, Karabela G, Stavropoulos E, et al. Cardiac tissue characterization and the diagnostic value of cardiovascular magnetic resonance in systemic connective tissue diseases. Arthritis Care Res. 2014;66:104–12.

    Google Scholar 

  65. • Rodríguez-Reyna TS, Morelos-Guzman M, Hernández-Reyes P, Montero-Duarte K, Martínez-Reyes C, Reyes-Utrera C, et al. Assessment of myocardial fibrosis and microvascular damage in systemic sclerosis by magnetic resonance imaging and coronary angiotomography. Rheumatology (Oxford). 2015;54:647–54. Study of CMR analysis in SSc patients indicating high prevalence of cardiac fibrosis due to microvascular dysfunction and not attributable to coronary artery disease.

  66. Nassenstein K, Breuckmann F, Huger M, Ladd SC, Schlosser T, Kreuter A, et al. Detection of myocardial fibrosis in systemic sclerosis by contrast-enhanced magnetic resonance imaging. Rofo. 2008;180:1054–60.

    CAS  PubMed  Google Scholar 

  67. Mavrogeni S, Koutsogeorgopoulou L, Karabela G, Stavropoulos E, Katsifis G, Raftakis J, et al. Silent myocarditis in systemic sclerosis detected by cardiovascular magnetic resonance using Lake Louise criteria. BMC Cardiovasc Disord. 2017;17:187.

    PubMed  PubMed Central  Google Scholar 

  68. Maurer B, Busch N, Jüngel A, Pileckyte M, Gay RE, Michel BA, et al. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis. Circulation. 2009;120:2367–76.

    CAS  PubMed  Google Scholar 

  69. Sanghera C, Wong LM, Panahi M, Sintou A, Hasham M, Sattler S. Cardiac phenotype in mouse models of systemic autoimmunity. Dis Model Mech. 2019;12(3):dmm036947.

  70. Manetti M, Rosa I, Fazi M, Guiducci S, Carmeliet P, Ibba-Manneschi L, et al. Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Ann Rheum Dis. 2016;75:474–8.

    CAS  PubMed  Google Scholar 

  71. Wang L, Pedroja BS, Meyers EE, Garcia AL, Twining SS, Bernstein AM. Degradation of internalized αvβ5 integrin is controlled by uPAR bound uPA: effect on β1 integrin activity and α-SMA stress fiber assembly. PLoS ONE. 2012;7:e33915.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. •• Bissell L-A, Anderson M, Burgess M, Chakravarty K, Coghlan G, Dumitru RB, et al. Consensus best practice pathway of the UK Systemic Sclerosis Study group: management of cardiac disease in systemic sclerosis. Rheumatology (Oxford). 2017;56:912–21. Consensus guidelines for cardiac monitoring and management of cardiac disease in patients with SSc.

  73. Luo Y, Jiang C, Krittanawong C, Arevalo Molina AB, Murray S, Huang F, et al. Systemic sclerosis and the risk of perioperative major adverse cardiovascular events for inpatient non-cardiac surgery. Int J Rheum Dis. 2019;22:1023–8.

    PubMed  Google Scholar 

  74. Carr ZJ, Klick J, McDowell BJ, Charchaflieh JG, Karamchandani K. An update on systemic sclerosis and its perioperative management. Curr Anesthesiol Rep. 2020;10:512.

    Google Scholar 

  75. Avouac J, Meune C, Chenevier-Gobeaux C, Borderie D, Lefevre G, Kahan A, et al. Cardiac biomarkers in systemic sclerosis: contribution of high-sensitivity cardiac troponin in addition to N-terminal pro-brain natriuretic peptide. Arthritis Care Res. 2015;67:1022–30.

    CAS  Google Scholar 

  76. Bosello S, Luca GD, Berardi G, Canestrari G, de Waure C, Gabrielli FA, et al. Cardiac troponin T and NT-proBNP as diagnostic and prognostic biomarkers of primary cardiac involvement and disease severity in systemic sclerosis: a prospective study. Eur J Intern Med. 2019;60:46–53.

    CAS  PubMed  Google Scholar 

  77. Chighizola C, Meroni PL, Schreiber BE, Coghlan JG, Denton CP, Ong VH. Role of N-terminal pro-brain natriuretic peptide in detecting clinically significant cardiac involvement in systemic sclerosis patients. Clin Exp Rheumatol. 2012;30:S81-85.

    PubMed  Google Scholar 

  78. Fernández-Codina A, Walker KM, Pope JE, Scleroderma Algorithm Group. Treatment algorithms for systemic sclerosis according to experts. Arthritis Rheumatol. 2018;70:1820–8.

    PubMed  Google Scholar 

  79. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the management of heart failure: a report of the American college of cardiology/American Heart Association task force on clinical practice guidelines and the heart failure society of America. Circulation. 2017;136:e137–61.

    Google Scholar 

  80. Bütikofer L, Varisco PA, Distler O, Kowal-Bielecka O, Allanore Y, Riemekasten G, et al. ACE inhibitors in SSc patients display a risk factor for scleroderma renal crisis-a EUSTAR analysis. Arthritis Res Ther. 2020;22:59.

    PubMed  PubMed Central  Google Scholar 

  81. Bose N, Chiesa-Vottero A, Chatterjee S. Scleroderma renal crisis. Semin Arthritis Rheum. 2015;44:687–94.

    CAS  PubMed  Google Scholar 

  82. • Allanore Y, Meune C, Vonk MC, Airo P, Hachulla E, Caramaschi P, et al. Prevalence and factors associated with left ventricular dysfunction in the EULAR Scleroderma Trial and Research group (EUSTAR) database of patients with systemic sclerosis. Ann Rheum Dis. 2010;69:218–21. Investigation of factors associated with LV dysfunction in a large SSc database.

  83. Pieroni M, De Santis M, Zizzo G, Bosello S, Smaldone C, Campioni M, et al. Recognizing and treating myocarditis in recent-onset systemic sclerosis heart disease: potential utility of immunosuppressive therapy in cardiac damage progression. Semin Arthritis Rheum. 2014;43:526–35.

    PubMed  Google Scholar 

  84. Nakamura H, Odani T, Yasuda S, Noguchi A, Fujieda Y, Kato M, et al. Autologous haematopoietic stem cell transplantation for Japanese patients with systemic sclerosis: long-term follow-up on a phase II trial and treatment-related fatal cardiomyopathy. Mod Rheumatol. 2018;28:879–84.

    PubMed  Google Scholar 

  85. • Valentini G, Huscher D, Riccardi A, Fasano S, Irace R, Messiniti V, et al. Vasodilators and low-dose acetylsalicylic acid are associated with a lower incidence of distinct primary myocardial disease manifestations in systemic sclerosis: results of the DeSScipher inception cohort study. Ann Rheum Dis. 2019;78:1576–82. Results of DeSScipher study indicating lower rates of certain major cardiac events among SSc patients treated prophylactically with low-dose aspirin or vasodilators.

  86. •• Volkmann ER, Varga J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nature Rev Rheumatol. 2019;15:208–24. Review detailing novel therapeutic targets in SSc, including anti-fibrotic agents.

  87. Khanna D, Bush E, Nagaraja V, Koenig A, Khanna P, Young A, et al. Tofacitinib in Early Diffuse Cutaneous Systemic Sclerosis—Results of Phase I/II Investigator-Initiated, Double-Blind Randomized Placebo-Controlled Trial [abstract]. Arthritis Rheumatol. 2019;71 (suppl 10). https://acrabstracts.org/abstract/tofacitinib-in-early-diffuse-cutaneous-systemic-sclerosis-results-of-phase-i-ii-investigator-initiated-double-blind-randomized-placebo-controlled-trial/. Accessed October 9, 2021.

  88. Thiebaut M, Launay D, Rivière S, Mahévas T, Bellakhal S, Hachulla E, et al. Efficacy and safety of rituximab in systemic sclerosis: French retrospective study and literature review. Autoimmun Rev. 2018;17:582–7.

    CAS  PubMed  Google Scholar 

  89. Gordon JK, Martyanov V, Franks JM, Bernstein EJ, Szymonifka J, Magro C, et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol. 2018;70:308–16.

    CAS  PubMed  Google Scholar 

  90. • Fang L, Murphy AJ, Dart AM. A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease. Front Pharmacol. 2017;8:186. Review of existing and novel targets for cardiac anti-fibrotic therapeutics.

  91. Li X, Zhu L, Wang B, Yuan M, Zhu R. Drugs and Targets in Fibrosis. Front Pharmacol. 2017;8:855.

  92. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, et al. Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. N Engl J Med. 2019;380(26):2518-2528.

  93. Silver R, Atanelishvili I, Akter T, Kajdasz K, Wilson D, Nietert P, et al. Safety and Suitability of a Direct Thrombin Inhibitor, Dabigatran Etexilate, in Scleroderma-Associated Interstitial Lung Disease (SSc-ILD) Patients [abstract]. Am J Resp Crit Care Med 2018;197:A1055. Accessed on October 9, 2021.

  94. Higgins AY, O’Halloran TD, Chang JD. Chemotherapy-induced cardiomyopathy. Heart Fail Rev. 2015;20(6):721-730. https://doi.org/10.1007/s10741-015-9502-y.

Download references

Funding

Dr. Tang is partially supported by grants from the National Institutes of Health (R01HL126827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang MD.

Ethics declarations

Conflict of Interest

Dr. Tang is a consultant for Sequana Medical A.G., Owkin Inc., PreCARDIA Inc., Relypsa Inc., Genomics plc, and Cardiol Therapeutics Inc. and has received honorarium from Springer Nature for authorship/editorship and American Board of Internal Medicine for exam writing committee participation, all unrelated to the contents of this paper. All other authors have no relationships to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagouras, A.A., Chatterjee, S. & Tang, W.H.W. Heart Failure with Preserved Ejection Fraction and Cardiomyopathy: an Under-recognized Complication of Systemic Sclerosis. Curr Treat Options Cardio Med 23, 71 (2021). https://doi.org/10.1007/s11936-021-00947-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-021-00947-w

Keywords

Navigation