Skip to main content

Advertisement

Log in

Mechanobiology of Bone Metastatic Cancer

  • Biomechanics (J Nyman and C Hernandez, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose of Review

In this review, we provide an overview of what is currently known about the impacts of mechanical stimuli on metastatic tumor-induced bone disease (TIBD). Further, we focus on the role of the osteocyte, the skeleton’s primary mechanosensory cell, which is central to the skeleton’s mechanoresponse, sensing and integrating local mechanical stimuli, and then controlling the downstream remodeling balance as appropriate.

Recent Findings

Exercise and controlled mechanical loading have anabolic effects on bone tissue in models of bone metastasis. They also have anti-tumorigenic properties, in part due to offsetting the vicious cycle of osteolytic bone loss as well as regulating inflammatory signals. The impacts of metastatic cancer on the mechanosensory function of osteocytes remains unclear.

Summary

Increased mechanical stimuli are a potential method for mitigating TIBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 662 2021. CA: A Cancer Journal for Clinicians. 2021;7(1);7–33. https://doi.org/10.3322/caac.21654.

  2. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Zheng M, Zoledronic Acid Prostate Cancer Study Group. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J. Natl. Cancer Inst. 2004;96(11):879–82.

    Article  CAS  PubMed  Google Scholar 

  3. Grill V, Martin TJ. Hypercalcemia of malignancy. Rev. Endocr. Metab. Disord. 2000;1(4):253–63.

    Article  CAS  PubMed  Google Scholar 

  4. Cheung AM, Giangregorio L. Mechanical stimuli and bone health: what is the evidence? Curr. Opin. Rheumatol. 2012;24(5):561–6.

    Article  PubMed  Google Scholar 

  5. Friedenreich CM, Stone CR, Cheung WY, Hayes SC. Physical activity and mortality in cancer survivors: a systematic review and meta-analysis. JNCI Cancer Spectr. 2020;4(1):pkz080.

    Article  PubMed  Google Scholar 

  6. Jurdana M. Physical activity and cancer risk. Actual knowledge and possible biological mechanisms. Radiol. Oncol. 2021;55(1):7–17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dittus KL, Gramling RE, Ades PA. Exercise interventions for individuals with advanced cancer: a systematic review. Prev. Med. 2017;104:124–32.

    Article  PubMed  Google Scholar 

  8. Headley JA, Ownby KK, John LD. The effect of seated exercise on fatigue and quality of life in women with advanced breast cancer. Oncol. Nurs. Forum. 2004;31(5):977–83.

    Article  PubMed  Google Scholar 

  9. Beaton R, Pagdin-Friesen W, Robertson C, Vigar C, Watson H, Harris SR. Effects of exercise intervention on persons with metastatic cancer: a systematic review. Physiother. Can. 2009;61(3):141–53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilk M, Kepski J, Kepska J, Casselli S, Szmit S. Exercise interventions in metastatic cancer disease: a literature review and a brief discussion on current and future perspectives. BMJ Support. Palliat. Care. 2020;10(4):404–10.

    Article  PubMed  Google Scholar 

  11. •• Fan Y, Jalali A, Chen A, Zhao X, Liu S, Teli M, et al. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res. 2020;8:9 First to show the damage-inducing loading reverses the protective effects against TIBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch ME, Brooks D, Mohanan S, Lee MJ, Polamraju P, Dent K, Bonassar LJ, van der Meulen MCH, Fischbach C. In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model. J. Bone Miner. Res. 2013;28(11):2357–67.

    Article  PubMed  Google Scholar 

  13. Rummler M, Ziouti F, Bouchard AL, Brandl A, Duda GN, Bogen B, Beilhack A, Lynch ME, Jundt F, Willie BM. Mechanical loading prevents bone destruction and exerts anti-tumor effects in the MOPC315.BM.Luc model of myeloma bone disease. Acta Biomater. 2021;119:247–58.

    Article  CAS  PubMed  Google Scholar 

  14. Ziouti F, Rummler M, Steyn B, Thiele T, Seliger A, Duda GN, et al. Prevention of bone destruction by mechanical loading is not enhanced by the Bruton’s tyrosine kinase inhibitor CC-292 in myeloma bone disease. Int. J. Mol. Sci. 2021;22(8):3840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang S, Liu H, Zhu L, Li X, Liu D, Song X, Yokota H, Zhang P. Ankle loading ameliorates bone loss from breast cancer-associated bone metastasis. FASEB J. 2019;33(10):10742–52.

    Article  CAS  PubMed  Google Scholar 

  16. Huang M, Liu H, Zhu L, Li X, Li J, Yang S, Liu D, Song X, Yokota H, Zhang P. Mechanical loading attenuates breast cancer-associated bone metastasis in obese mice by regulating the bone marrow microenvironment. J. Cell. Physiol. 2021;236:6391–406.

    Article  CAS  PubMed  Google Scholar 

  17. Pagnotti GM, Chan ME, Adler BJ, Shroyer KR, Rubin J, Bain SD, Rubin CT. Low intensity vibration mitigates tumor progression and protects bone quantity and quality in a murine model of myeloma. Bone. 2016;90:69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  18. • Liu S, Wu D, Sun X, Fan Y, Zha R, Jalali A, et al. Mechanical stimulations can inhibit local and remote tumor progression by downregulating WISP1. FASEB J. 2020;34(9):12847–59 Knee loading had distant, anti-tumorigenic effects on orthotopic mammary tumors.

    Article  CAS  PubMed  Google Scholar 

  19. •• Wang S, Pei S, Wasi M, Parajuli A, Yee A, You L, et al. Moderate tibial loading and treadmill running, but not overloading, protect adult murine bone from destruction by metastasized breast cancer. Bone. 2021:116100 First to demonstrate that in vivo moderate aerobic exercise was protective against breast cancer bone metastatic bone loss.

  20. Bonewald LF. The Amazing Osteocyte. J. Bone Miner. Res. 2011;26:229–38.

    Article  CAS  PubMed  Google Scholar 

  21. Atkinson EG, Delgado-Calle J. The emerging role of osteocytes in cancer in bone. JBMR Plus. 2019;3(3):e10186.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 2006;8:455–98.

    Article  CAS  PubMed  Google Scholar 

  23. Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif. Tissue Int. 2014;94(1):5–24.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011;17(10):1231–4.

    Article  CAS  PubMed  Google Scholar 

  25. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat. Med. 2011;17(10):1235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    Article  CAS  PubMed  Google Scholar 

  27. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi Y, Uehara S, Udagawa N, Takahashi N. Regulation of bone metabolism by Wnt signals. J. Biochem. 2016;159(4):387–92.

    Article  CAS  PubMed  Google Scholar 

  29. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016;12(4):203–21.

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Ominsky MS, Zhu Ke H, Li X, Richards WG. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39(4):754–66.

    Article  CAS  PubMed  Google Scholar 

  31. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Plotkin LI. Apoptotic osteocytes and the control of targeted bone resorption. Curr Osteoporos Rep. 2014;12(1):121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baschuk N, Rautela J, Parker BS. Bone specific immunity and its impact on metastasis. Bonekey Rep. 2015;4:665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY, Goncalves RB, Valverde P, Dibart S, Li YP, Miranda LA, Ernst CWO, Izumi Y, Taubman MA. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am. J. Pathol. 2006;169(3):987–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi M, Rolle S, Wellner M, Cardoso MC, Scheidereit C, Luft FC, Kettritz R. Inhibition of NF-kappaB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood. 2003;102(6):2259–67.

    Article  CAS  PubMed  Google Scholar 

  36. Ponzetti M, Rucci N. Updates on Osteoimmunology: What’s new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne). 2019;10:236.

    Article  Google Scholar 

  37. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41.

    Article  CAS  PubMed  Google Scholar 

  38. Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, Sada A, Ikeda K, Matsui T, Katayama Y. Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab. 2013;18(5):749–58.

    Article  CAS  PubMed  Google Scholar 

  39. Li P, Schwarz EM, O'Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L. Systemic tumor necrosis factor α mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor α–transgenic mice. Arthritis Rheum. 2004;50(1):265–76.

    Article  CAS  PubMed  Google Scholar 

  40. Weigelt B, Peterse JL. van 't Veer LJ. Breast cancer metastasis: markers and models. Nat. Rev. Cancer. 2005;5(8):591–602.

    Article  CAS  PubMed  Google Scholar 

  41. Le Pape F, Vargas G, Clezardin P. The role of osteoclasts in breast cancer bone metastasis. J Bone Oncol. 2016;5(3):93–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Clezardin P. Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res. 2011;13(2):207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guise TA. The vicious cycle of bone metastases. J. Musculoskelet. Neuronal Interact. 2002;2(6):570–2.

    CAS  PubMed  Google Scholar 

  44. Ihle CL, Owens P. Integrating the immune microenvironment of prostate cancer induced bone disease. Mol. Carcinog. 2020;59(7):822–9.

    Article  CAS  PubMed  Google Scholar 

  45. Gobel A, Dell'Endice S, Jaschke N, Pahlig S, Shahid A, Hofbauer LC, et al. The role of inflammation in breast and prostate cancer metastasis to bone. Int. J. Mol. Sci. 2021;22(10).

  46. Hesse E, Schröder S, Brandt D, Pamperin J, Saito H, Taipaleenmäki H. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. JCI Insight. 2019;5(9):e125543.

    Article  Google Scholar 

  47. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: An overview. Oncol. Rev. 2017;11(1):321.

    PubMed  PubMed Central  Google Scholar 

  48. Terpos E, Christoulas D, Katodritou E, Bratengeier C, Gkotzamanidou M, Michalis E, Delimpasi S, Pouli A, Meletis J, Kastritis E, Zervas K, Dimopoulos MA. Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. Int. J. Cancer. 2011;131(6):1466–71.

    Article  PubMed  Google Scholar 

  49. Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, Bonomini S, Martella E, Agnelli L, Neri A, Ceccarelli F, Palumbo C. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia. 2012;26(6):1391–401.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou JZ, Riquelme MA, Gu S, Kar R, Gao X, Sun L, Jiang JX. Osteocytic connexin hemichannels suppress breast cancer growth and bone metastasis. Oncogene. 2016;35(43):5597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sekita A, Matsugaki A, Ishimoto T, Nakano T. Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis. J. Struct. Biol. 2017;197(3):260–70.

    Article  CAS  PubMed  Google Scholar 

  52. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Puschel K, Djuric M, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7(9):7542–51.

    Article  CAS  PubMed  Google Scholar 

  53. Lee J-H, Kim H-N, Kim K-O, Jin WJ, Lee S, Kim H-H, Ha H, Lee ZH. CXCL10 promotes osteolytic bone metastasis by enhancing cancer outgrowth and osteoclastogenesis. Cancer Res. 2012;72(13):3175–86.

    Article  CAS  PubMed  Google Scholar 

  54. Xiang L, Gilkes DM. The contribution of the immune system in bone metastasis pathogenesis. Int. J. Mol. Sci. 2019;20(4):999.

    Article  CAS  PubMed Central  Google Scholar 

  55. Tucci M, Stucci S, Strippoli S, Dammacco F, Silvestris F. Dendritic cells and malignant plasma cells: an alliance in multiple myeloma tumor progression? Oncologist. 2011;16(7):1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sawant A, Hensel JA, Chanda D, Harris BA, Siegal GP, Maheshwari A, Ponnazhagan S. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells. J. Immunol. 2012;189(9):4258–65.

    Article  CAS  PubMed  Google Scholar 

  57. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate–mediated mmp-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007;67(23):11438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alsamraae M, Cook LM. Emerging roles for myeloid immune cells in bone metastasis. Cancer Metastasis Rev. 2021;40(2):413-425, https://doi.org/10.1007/s10555-021-09965-3.

  59. Costanzo-Garvey DL, Keeley T, Case AJ, Watson GF, Alsamraae M, Yu Y, Su K, Heim CE, Kielian T, Morrissey C, Frieling JS, Cook LM. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol. Immunother. 2020;69(6):1113–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front. Oncol. 2020;10(2232).

  61. Jones JD, Sinder BP, Paige D, Soki FN, Koh AJ, Thiele S, et al. Trabectedin reduces skeletal prostate cancer tumor size in association with effects on m2 macrophages and efferocytosis. Neoplasia. 2019;21(2):172–84.

    Article  CAS  PubMed  Google Scholar 

  62. Roca H, McCauley LK. Efferocytosis and prostate cancer skeletal metastasis: Implications for intervention. Oncoscience. 2018;5(5-6):174–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 1987;219(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  64. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J. Bone Miner. Res. 2001;16(1):148–56.

    Article  CAS  PubMed  Google Scholar 

  65. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone. 2000;27(3):351–7.

    Article  CAS  PubMed  Google Scholar 

  66. Vainionpaa A, Korpelainen R, Leppaluoto J, Jamsa T. Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos. Int. 2005;16(2):191–7.

    Article  PubMed  Google Scholar 

  67. von Stengel S, Kemmler W, Kalender WA, Engelke K, Lauber D. Differential effects of strength versus power training on bone mineral density in postmenopausal women: a 2-year longitudinal study. Br. J. Sports Med. 2007;41(10):649–55 discussion 55.

    Article  Google Scholar 

  68. Stengel SV, Kemmler W, Pintag R, Beeskow C, Weineck J, Lauber D, Kalender WA, Engelke K. Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J. Appl. Physiol. 2005;99(1):181–8.

    Article  CAS  PubMed  Google Scholar 

  69. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O'Brien CA, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83.

    Article  CAS  PubMed  Google Scholar 

  70. Galea GL, Paradise CR, Meakin LB, Camilleri ET, Taipaleenmaki H, Stein GS, et al. Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2. Gene X. 2020;5:100027.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Luff SA, Papoutsakis ET. Megakaryocytic maturation in response to shear flow is mediated by the activator protein 1 (AP-1) transcription factor via mitogen-activated protein kinase (MAPK) mechanotransduction. J. Biol. Chem. 2016;291(15):7831–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Soves CP, Miller JD, Begun DL, Taichman RS, Hankenson KD, Goldstein SA. Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation. Bone. 2014;66:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Metzger CE, Narayanan SA. The role of osteocytes in inflammatory bone loss. Front Endocrinol (Lausanne). 2019;10:285.

    Article  Google Scholar 

  74. Nanes MS. Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;321:1–15.

    Article  CAS  PubMed  Google Scholar 

  75. Bakker AD, Silva VC, Krishnan R, Bacabac RG, Blaauboer ME, Lin YC, et al. Tumor necrosis factor alpha and interleukin-1beta modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes. Arthritis Rheum. 2009;60(11):3336–45.

    Article  CAS  PubMed  Google Scholar 

  76. Liao C, Cheng T, Wang S, Zhang C, Jin L, Yang Y. Shear stress inhibits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways. Bone. 2017;101:10–20.

    Article  CAS  PubMed  Google Scholar 

  77. Metzger CE, Anand Narayanan S, Phan PH, Bloomfield SA. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. NPJ Microgravity. 2020;6:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Matthews CE, Moore SC, Arem H, Cook MB, Trabert B, Hakansson N, et al. Amount and intensity of leisure-time physical activity and lower cancer risk. J. Clin. Oncol. 2020;38(7):686–97.

    Article  PubMed  Google Scholar 

  79. Friedenreich CM. Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms. Recent Results Cancer Res. 2011;188:125–39.

    Article  CAS  PubMed  Google Scholar 

  80. Williams PT. Significantly greater reduction in breast cancer mortality from post-diagnosis running than walking. Int. J. Cancer. 2014;135(5):1195–202.

    Article  CAS  PubMed  Google Scholar 

  81. Uth J, Fristrup B, Sorensen V, Helge EW, Christensen MK, Kjaergaard JB, et al. One year of Football Fitness improves L1-L4 BMD, postural balance, and muscle strength in women treated for breast cancer. Scand. J. Med. Sci. Sports. 2021;31:1545–57.

    Article  PubMed  Google Scholar 

  82. Vehmanen L, Sievanen H, Kellokumpu-Lehtinen P, Nikander R, Huovinen R, Ruohola J, et al. Five-year follow-up results of aerobic and impact training on bone mineral density in early breast cancer patients. Osteoporos. Int. 2021;32(3):473–82.

    Article  CAS  PubMed  Google Scholar 

  83. Dalla Via J, Daly RM, Fraser SF. The effect of exercise on bone mineral density in adult cancer survivors: a systematic review and meta-analysis. Osteoporos. Int. 2018;29(2):287–303.

    Article  CAS  PubMed  Google Scholar 

  84. Schwartz AL, Winters-Stone K, Gallucci B. Exercise effects on bone mineral density in women with breast cancer receiving adjuvant chemotherapy. Oncol. Nurs. Forum. 2007;34(3):627–33.

    Article  PubMed  Google Scholar 

  85. Winters-Stone KM, Dobek J, Nail L, Bennett JA, Leo MC, Naik A, Schwartz A. Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: a randomized, controlled trial. Breast Cancer Res. Treat. 2011;127(2):447–56.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Campbell KL, Weller S, Cormie P, Lane KN, Rauw JM, Goulart J. Enhancing safety of exercise for individuals with bone metastases: screening recommendations developed through Delphi consensus process. J. Clin. Oncol. 2020;38(15_suppl):e24042-e.

    Article  Google Scholar 

  87. Ashcraft KA, Peace RM, Betof AS, Dewhirst MW, Jones LW. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: a critical systematic review of in vivo preclinical data. Cancer Res. 2016;76(14):4032–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aveseh M, Nikooie R, Aminaie M. Exercise-induced changes in tumour LDH-B and MCT1 expression are modulated by oestrogen-related receptor alpha in breast cancer-bearing BALB/c mice. J. Physiol. 2015;593(12):2635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abdalla DR, Murta EF, Michelin MA. The influence of physical activity on the profile of immune response cells and cytokine synthesis in mice with experimental breast tumors induced by 7,12-dimethylbenzanthracene. Eur. J. Cancer Prev. 2013;22(3):251–8.

    Article  CAS  PubMed  Google Scholar 

  90. Abdalla DR, Gomes BBM, Murta EFC, Michelin MA. Bone marrow-derived dendritic cells under influence of experimental breast cancer and physical activity. Oncol. Lett. 2017;13(3):1406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wennerberg E, Lhuillier C, Rybstein MD, Dannenberg K, Rudqvist NP, Koelwyn GJ, Jones LW, Demaria S. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget. 2020;11(4):452–61.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fritton JC, Myers ER, Wright TM, van der Meulen MC. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone. 2005;36(6):1030–8.

    Article  CAS  PubMed  Google Scholar 

  93. Brodt MD, Silva MJ. Aged mice have enhanced endocortical response and normal periosteal response compared to young-adult mice following 1 week of axial tibial compression. J. Bone Miner. Res. 2010;25(9):2006–15.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J. Clin. 2017;67(5):378–97.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pagnotti GM, Adler BJ, Green DE, Chan ME, Frechette DM, Shroyer KR, Beamer WG, Rubin J, Rubin CT. Low magnitude mechanical signals mitigate osteopenia without compromising longevity in an aged murine model of spontaneous granulosa cell ovarian cancer. Bone. 2012;51(3):570–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603–4.

    Article  CAS  PubMed  Google Scholar 

  97. Shieh AC. Biomechanical forces shape the tumor microenvironment. Ann. Biomed. Eng. 2011;39(5):1379–89.

    Article  PubMed  Google Scholar 

  98. Brown MJ, Morris MA, Akam EC. An exploration of the role of exercise in modulating breast cancer progression in vitro: a systematic review and meta-analysis. Am. J. Phys. Cell Phys. 2021;320(3):C253–C63.

    CAS  Google Scholar 

  99. Baldelli G, De Santi M, Gervasi M, Annibalini G, Sisti D, Hojman P, et al. The effects of human sera conditioned by high-intensity exercise sessions and training on the tumorigenic potential of cancer cells. Clin. Transl. Oncol. 2021;23(1):22–34.

    Article  CAS  PubMed  Google Scholar 

  100. Ma YV, Lam C, Dalmia S, Gao P, Young J, Middleton K, et al. Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte signaling. J. Cell. Biochem. 2018;119(7):5665–75.

    Article  CAS  PubMed  Google Scholar 

  101. • Mei X, Middleton K, Shim D, Wan Q, Xu L, Ma YV, et al. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integr Biol (Camb). 2019;11(4):119–29 New 3D microfluidic platform for investigating osteocytes, loading, and breast cancer.

    Article  Google Scholar 

  102. Ma YV, Xu L, Mei X, Middleton K, You L. Mechanically stimulated osteocytes reduce the bone-metastatic potential of breast cancer cells in vitro by signaling through endothelial cells. J. Cell. Biochem. 2019;120(5):7590–601.

    Article  CAS  Google Scholar 

  103. Heveran CM, Schurman CA, Acevedo C, Livingston EW, Howe D, Schaible EG, Hunt HB, Rauff A, Donnelly E, Carpenter RD, Levi M, Lau AG, Bateman TA, Alliston T, King KB, Ferguson VL. Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone. 2019;127:91–103.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tazawa K, Hoshi K, Kawamoto S, Tanaka M, Ejiri S, Ozawa H. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J. Bone Miner. Metab. 2004;22(6):524–9.

    Article  CAS  PubMed  Google Scholar 

  105. Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, Yoneda T, Mohammad KS, Plotkin LI, Roodman GD, Bellido T. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76(5):1089–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ziouti F, Soares AP, Moreno-Jimenez I, Rack A, Bogen B, Cipitria A, et al. An early myeloma bone disease model in skeletally mature mice as a platform for biomaterial characterization of the extracellular matrix. J Oncol. 2020;2020:3985315–2.

    Article  PubMed  PubMed Central  Google Scholar 

  107. • Pin F, Prideaux M, Huot JR, Essex AL, Plotkin LI, Bonetto A, et al. Non-bone metastatic cancers promote osteocyte-induced bone destruction. Cancer Lett. 2021; Non-bone metastatic cancers induce osteocyte direct remodeling.

  108. • Wang W, Sarazin BA, Kornilowicz G, Lynch ME. Mechanically-loaded breast cancer cells modify osteocyte mechanosensitivity by secreting factors that increase osteocyte dendrite formation and downstream resorption. Front. Endocrinol. 2018;9(352) Breast cancer signals impair osteocyte mechanoresponse.

  109. Wang W, Yang X, Dai J, Lu Y, Zhang J, Keller ET. Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene. 2019;38(23):4540–59.

    Article  CAS  PubMed  Google Scholar 

  110. Wang X, He Y, Tian S, Zhu F, Huang B, Zhang J, Chen Z, Wang H. Fluid shear stress increases osteocyte and inhibits osteoclasts via downregulating receptor-activator of nuclear factor kappaB (RANK)/osteoprotegerin expression in myeloma microenvironment. Med. Sci. Monit. 2019;25:5961–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J. Bone Miner. Res. 2011;26(11):2634–46.

    Article  CAS  PubMed  Google Scholar 

  112. Xu LH, Shao H, Ma YV, You L. OCY454 Osteocytes as an in Vitro Cell Model for Bone Remodeling Under Mechanical Loading. J. Orthop. Res. 2019;37:1681–9.

    Article  CAS  PubMed  Google Scholar 

  113. McBride SH, Silva MJ. Adaptive and Injury Response of Bone to Mechanical Loading. Bonekey Osteovision. 2012;1.

  114. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

Cancer League of Colorado (ML, PO), National Science Foundation CMMI 2047187 (ML), Veteran’s Affairs Grant 1KBX00002929 (PO). CI supported by NIH/NCATS Colorado CTSA Grant Number TL1 TR002533; Contents are the authors’ sole responsibility and do not necessarily represent official NIH views.

Author information

Authors and Affiliations

Authors

Contributions

BS: Conception, writing, editing

CI: Writing, editing

PO: Conception, writing, editing

ML: Conception, writing, editing

Corresponding author

Correspondence to Maureen E. Lynch.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomechanics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarazin, B.A., Ihle, C.L., Owens, P. et al. Mechanobiology of Bone Metastatic Cancer. Curr Osteoporos Rep 19, 580–591 (2021). https://doi.org/10.1007/s11914-021-00704-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00704-9

Keywords

Navigation