Skip to main content

Advertisement

Log in

Emerging Insights and Interventions for Diabetic Retinopathy

  • Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To introduce recent advances in the understanding of diabetic retinopathy and to summarize current and emerging strategies to treat this common and complex cause of vision loss.

Recent Findings

Advances in retinal imaging and functional analysis indicate that retinal vascular and neural pathologies exist long before the development of clinically visible retinopathy. Such diagnostics could facilitate risk stratification and selective early intervention in high-risk patients. Antagonists of the vascular endothelial growth factor pathway effectively reduce vision loss in diabetes and promote regression of disease severity. Promising new strategies to treat diabetic retinopathy involve novel systemic diabetes therapy and ocular therapies that antagonize angiogenic growth factor signaling, improve blood-retina barrier function and neurovascular coupling, modulate neuroretinal metabolism, or provide neuroprotection.

Summary

Long considered a pure microvasculopathy, diabetic retinopathy in fact affects the neural and vascular retina as well as neurovascular communication. Emerging therapies include those that target neuroretinal dysfunction in addition to those modulating vascular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention: National Diabetes Statistics Report: Estimates of diabetes and its burden in the United States, 2017. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf. Accessed June 3, 2019.

  2. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009;116(3):497–503. https://doi.org/10.1016/j.ophtha.2008.10.016.

    Article  PubMed  Google Scholar 

  3. Thompson JT, de Bustros S, Michels RG, Rice TA. Results and prognostic factors in vitrectomy for diabetic traction retinal detachment of the macula. Arch Ophthalmol. 1987;105(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  4. Abunajma MA, Al-Dhibi H, Abboud EB, Al Zahrani Y, Alharthi E, Alkharashi A, et al. The outcomes and prognostic factors of vitrectomy in chronic diabetic traction macular detachment. Clin Ophthalmol. 2016;10:1653–61. https://doi.org/10.2147/OPTH.S98555.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7. https://doi.org/10.1056/NEJM199412013312203.

    Article  CAS  PubMed  Google Scholar 

  6. Ip MS, Domalpally A, Sun JK, Ehrlich JS. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology. 2015;122(2):367–74. https://doi.org/10.1016/j.ophtha.2014.08.048.

    Article  PubMed  Google Scholar 

  7. • Mitchell P, McAllister I, Larsen M, Staurenghi G, Korobelnik JF, Boyer DS, et al. Evaluating the impact of intravitreal aflibercept on diabetic retinopathy progression in the VIVID-DME and VISTA-DME studies. Ophthalmol Retina. 2018;2(10):988–96. https://doi.org/10.1016/j.oret.2018.02.011. In a sub-analysis of the phase 3 VIVID and VISTA studies in which patients with center-involving DME were treated with two different regimens of aflibercept, more patients receiving aflibercept experienced 2-step improvement in DR severity score compared with those in the laser control arm.

    Article  PubMed  Google Scholar 

  8. • Wykoff CC, Eichenbaum DA, Roth DB, Hill L, Fung AE, Haskova Z. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol Retina. 2018;2(10):997–1009. https://doi.org/10.1016/j.oret.2018.06.005. In a post hoc analysis of the phase 3 RISE and RIDE trials in which patients with center-involving DME were treated with two different doses of ranibizumab, more patients receiving ranibizumab experienced 2-step improvement in DR severity score compared with those in the laser control arm. Effects were greatest among patients with baseline severity score of 47/53.

    Article  PubMed  Google Scholar 

  9. Ashton N. Vascular changes in diabetes with particular reference to the retinal vessels; preliminary report. Br J Ophthalmol. 1949;33(7):407–20. https://doi.org/10.1136/bjo.33.7.407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cogan DG. Diabetic retinopathy. N Engl J Med. 1964;270:787–8. https://doi.org/10.1056/NEJM196404092701508.

    Article  CAS  PubMed  Google Scholar 

  11. Toussaint D, Cogan DG, Kuwabara T. Extravascular lesions of diabetic retinopathy. Arch Ophthalmol. 1962;67:42–7.

    Article  CAS  PubMed  Google Scholar 

  12. de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364–70. https://doi.org/10.1097/IAE.0000000000000882.

    Article  PubMed  Google Scholar 

  13. • Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(1):190–6. https://doi.org/10.1167/iovs.16-20531. In this OCT-A analysis of parafoveal vascular parameters, superficial and deep retinal vessel density was decreased in patients with diabetes and no retinopathy compared with healthy subjects.

    Article  PubMed  Google Scholar 

  14. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377–83. https://doi.org/10.1097/IAE.0000000000000849.

    Article  PubMed  Google Scholar 

  15. Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol. 2016;168:129–38. https://doi.org/10.1016/j.ajo.2016.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hwang TS, Zhang M, Bhavsar K, Zhang X, Campbell JP, Lin P, et al. Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134(12):1411–9. https://doi.org/10.1001/jamaophthalmol.2016.4272.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baxter SL, Ashir A, Nguyen BJ, Nudleman E. Quantification of retinal nonperfusion associated with posterior segment neovascularization in diabetic retinopathy using ultra-widefield fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2019;50(2):86–92. https://doi.org/10.3928/23258160-20190129-04.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038–10. https://doi.org/10.1155/2007/61038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gugliucci A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr. 2017;8(1):54–62. https://doi.org/10.3945/an.116.013912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep. 2011;11(4):244–52. https://doi.org/10.1007/s11892-011-0198-7.

    Article  Google Scholar 

  21. Sun JK, Keenan HA, Cavallerano JD, Asztalos BF, Schaefer EJ, Sell DR, et al. Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration: the Joslin 50-year medalist study. Diabetes Care. 2011;34(4):968–74. https://doi.org/10.2337/dc10-1675.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31. https://doi.org/10.1161/CIRCRESAHA.110.217117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayloo S, Gu C. Transcytosis at the blood-brain barrier. Curr Opin Neurobiol. 2019;57:32–8. https://doi.org/10.1016/j.conb.2018.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diaz-Coranguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vis Res. 2017;139:123–37. https://doi.org/10.1016/j.visres.2017.05.009.

    Article  PubMed  Google Scholar 

  25. Miloudi K, Oubaha M, Menard C, Dejda A, Guber V, Cagnone G, et al. NOTCH1 signaling induces pathological vascular permeability in diabetic retinopathy. Proc Natl Acad Sci U S A. 2019;116:4538–47. https://doi.org/10.1073/pnas.1814711116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol. 1994;340(4):566–76. https://doi.org/10.1002/cne.903400409.

    Article  CAS  PubMed  Google Scholar 

  27. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6. https://doi.org/10.1038/nature09513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002;21(16):4307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tikhonenko M, Lydic TA, Wang Y, Chen W, Opreanu M, Sochacki A, et al. Remodeling of retinal fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes. 2010;59(1):219–27. https://doi.org/10.2337/db09-0728.

    Article  CAS  PubMed  Google Scholar 

  30. Sapieha P, Chen J, Stahl A, Seaward MR, Favazza TL, Juan AM, et al. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice. Nutr Diabetes. 2012;2:e36. https://doi.org/10.1038/nutd.2012.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Kady NM, Liu X, Lydic TA, Syed MH, Navitskaya S, Wang Q, et al. ELOVL4-mediated production of very long-chain ceramides stabilizes tight junctions and prevents diabetes-induced retinal vascular permeability. Diabetes. 2018;67(4):769–81. https://doi.org/10.2337/db17-1034. In a mouse model of DR, correction of diabetes-induced reduction of VLC-PUFA by AAV-mediated ELOVL4 overexpression restores ceramide-dependent BRB integrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abcouwer SF, Lin CM, Wolpert EB, Shanmugam S, Schaefer EW, Freeman WM, et al. Effects of ischemic preconditioning and bevacizumab on apoptosis and vascular permeability following retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2010;51(11):5920–33. https://doi.org/10.1167/iovs.10-5264.

    Article  PubMed  Google Scholar 

  33. Muthusamy A, Lin CM, Shanmugam S, Lindner HM, Abcouwer SF, Antonetti DA. Ischemia-reperfusion injury induces occludin phosphorylation/ubiquitination and retinal vascular permeability in a VEGFR-2-dependent manner. J Cereb Blood Flow Metab. 2014;34(3):522–31. https://doi.org/10.1038/jcbfm.2013.230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakahara T, Hoshino M, Hoshino S, Mori A, Sakamoto K, Ishii K. Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Exp Eye Res. 2015;135:134–45. https://doi.org/10.1016/j.exer.2015.02.020.

    Article  CAS  PubMed  Google Scholar 

  35. Puro DG. Diabetes-induced dysfunction of retinal Muller cells. Trans Am Ophthalmol Soc. 2002;100:339–52.

    PubMed  PubMed Central  Google Scholar 

  36. Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006;26(11):2862–70. https://doi.org/10.1523/JNEUROSCI.4048-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, et al. Conditional Muller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci. 2012;32(45):15715–27. https://doi.org/10.1523/JNEUROSCI.2841-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harada T, Harada C, Watanabe M, Inoue Y, Sakagawa T, Nakayama N, et al. Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc Natl Acad Sci U S A. 1998;95(8):4663–6. https://doi.org/10.1073/pnas.95.8.4663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karwoski CJ, Lu HK, Newman EA. Spatial buffering of light-evoked potassium increases by retinal Muller (glial) cells. Science. 1989;244(4904):578–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fine BS, Brucker AJ. Macular edema and cystoid macular edema. Am J Ophthalmol. 1981;92(4):466–81.

    Article  CAS  PubMed  Google Scholar 

  41. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes. 1998;47(3):445–9.

    Article  CAS  PubMed  Google Scholar 

  42. Bai Y, Ma JX, Guo J, Wang J, Zhu M, Chen Y, et al. Muller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol. 2009;219(4):446–54. https://doi.org/10.1002/path.2611.

    Article  CAS  PubMed  Google Scholar 

  43. Feenstra DJ, Yego EC, Mohr S. Modes of retinal cell death in diabetic retinopathy. J Clin Exp Ophthalmol. 2013;4(5):298. https://doi.org/10.4172/2155-9570.1000298.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab. 2013;33(11):1685–95. https://doi.org/10.1038/jcbfm.2013.145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lasta M, Pemp B, Schmidl D, Boltz A, Kaya S, Palkovits S, et al. Neurovascular dysfunction precedes neural dysfunction in the retina of patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2013;54(1):842–7. https://doi.org/10.1167/iovs.12-10873.

    Article  CAS  PubMed  Google Scholar 

  46. Lott ME, Slocomb JE, Shivkumar V, Smith B, Quillen D, Gabbay RA, et al. Impaired retinal vasodilator responses in prediabetes and type 2 diabetes. Acta Ophthalmol. 2013;91(6):e462–9. https://doi.org/10.1111/aos.12129.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mishra A, Newman EA. Inhibition of inducible nitric oxide synthase reverses the loss of functional hyperemia in diabetic retinopathy. Glia. 2010;58(16):1996–2004. https://doi.org/10.1002/glia.21068.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mishra A, Newman EA. Aminoguanidine reverses the loss of functional hyperemia in a rat model of diabetic retinopathy. Front Neuroenerg. 2011;3:10. https://doi.org/10.3389/fnene.2011.00010.

    Article  CAS  Google Scholar 

  49. Bresnick GH, Korth K, Groo A, Palta M. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy. Preliminary report. Arch Ophthalmol. 1984;102(9):1307–11.

    Article  CAS  PubMed  Google Scholar 

  50. Bresnick GH, Palta M. Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol. 1987;105(7):929–33.

    Article  CAS  PubMed  Google Scholar 

  51. Bresnick GH, Palta M. Temporal aspects of the electroretinogram in diabetic retinopathy. Arch Ophthalmol. 1987;105(5):660–4.

    Article  CAS  PubMed  Google Scholar 

  52. Harrison WW, Bearse MA Jr, Ng JS, Jewell NP, Barez S, Burger D, et al. Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci. 2011;52(2):772–7. https://doi.org/10.1167/iovs.10-5931.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Holopigian K, Seiple W, Lorenzo M, Carr R. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992;33(10):2773–80.

    CAS  PubMed  Google Scholar 

  54. Palmowski AM, Sutter EE, Bearse MA Jr, Fung W. Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci. 1997;38(12):2586–96.

    CAS  PubMed  Google Scholar 

  55. Aung MH, Kim MK, Olson DE, Thule PM, Pardue MT. Early visual deficits in streptozotocin-induced diabetic Long Evans rats. Invest Ophthalmol Vis Sci. 2013;54(2):1370–7. https://doi.org/10.1167/iovs.12-10927.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rajagopal R, Bligard GW, Zhang S, Yin L, Lukasiewicz P, Semenkovich CF. Functional deficits precede structural lesions in mice with high-fat diet-induced diabetic retinopathy. Diabetes. 2016;65(4):1072–84. https://doi.org/10.2337/db15-1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol. 1987;105(6):810–4.

    Article  CAS  PubMed  Google Scholar 

  58. Bearse MA Jr, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, et al. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res. 2006;25(5):425–48. https://doi.org/10.1016/j.preteyeres.2006.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jackson GR, Scott IU, Quillen DA, Walter LE, Gardner TW. Inner retinal visual dysfunction is a sensitive marker of non-proliferative diabetic retinopathy. Br J Ophthalmol. 2012;96(5):699–703. https://doi.org/10.1136/bjophthalmol-2011-300467.

    Article  PubMed  Google Scholar 

  60. Muntoni S, Serra A, Mascia C, Songini M. Dyschromatopsia in diabetes mellitus and its relation to metabolic control. Diabetes Care. 1982;5(4):375–8. https://doi.org/10.2337/diacare.5.4.375.

    Article  CAS  PubMed  Google Scholar 

  61. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  62. Henson DB, North RV. Dark adaptation in diabetes mellitus. Br J Ophthalmol. 1979;63(8):539–41. https://doi.org/10.1136/bjo.63.8.539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jain M, Devan S, Jaisankar D, Swaminathan G, Pardhan S, Raman R. Pupillary abnormalities with varying severity of diabetic retinopathy. Sci Rep. 2018;8(1):5636. https://doi.org/10.1038/s41598-018-24015-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. •• Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A. 2016;113(19):E2655–64. https://doi.org/10.1073/pnas.1522014113. In patients without visible DR, inner retinal thinning is detectable by high-resolution OCT analysis. These changes were progressive and independent of glycemic control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abramoff MD, Fort PE, Han IC, Jayasundera KT, Sohn EH, Gardner TW. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Invest Ophthalmol Vis Sci. 2018;59(1):519–27. https://doi.org/10.1167/iovs.17-21873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lynch SK, Abramoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vis Res. 2017;139:101–7. https://doi.org/10.1016/j.visres.2017.03.003.

    Article  PubMed  Google Scholar 

  67. van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;53(6):2715–9. https://doi.org/10.1167/iovs.11-8997.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39. https://doi.org/10.1056/NEJMra1005073.

    Article  CAS  PubMed  Google Scholar 

  69. Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117(6):1064–77.e35. https://doi.org/10.1016/j.ophtha.2010.02.031.

    Article  PubMed  Google Scholar 

  70. Elman MJ, Qin H, Aiello LP, Beck RW, Bressler NM, Ferris FL 3rd, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology. 2012;119(11):2312–8. https://doi.org/10.1016/j.ophtha.2012.08.022.

    Article  PubMed  Google Scholar 

  71. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801. https://doi.org/10.1016/j.ophtha.2011.12.039

    Article  PubMed  Google Scholar 

  72. The Diabetic Retinopathy Clinical Research N. Aflibercept. Bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372:1193–203. https://doi.org/10.1056/NEJMoa1414264.

    Article  CAS  Google Scholar 

  73. Kern TS, Engerman RL. Capillary lesions develop in retina rather than cerebral cortex in diabetes and experimental galactosemia. Arch Ophthalmol. 1996;114(3):306–10.

    Article  CAS  PubMed  Google Scholar 

  74. Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV Diabetic retinopathy. Arch Ophthalmol. 1961;66:366–78.

    Article  CAS  PubMed  Google Scholar 

  75. •• Joyal JS, Sun Y, Gantner ML, Shao Z, Evans LP, Saba N, et al. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med. 2016;22(4):439–45. https://doi.org/10.1038/nm.4059. This paper provides evidence that photoreceptors oxidize fatty acids to generate ATP, in addition to using the more traditional substrate, glucose. Moreover, disruption of a key lipid sensor necessary for fatty acid uptake into photoreceptors causes abnormal retinal vascularization, suggesting this metabolic pathway could be relevant to neovascular diseases of the retina.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kooragayala K, Gotoh N, Cogliati T, Nellissery J, Kaden TR, French S, et al. Quantification of oxygen consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria. Invest Ophthalmol Vis Sci. 2015;56(13):8428–36. https://doi.org/10.1167/iovs.15-17901.

    Article  CAS  Google Scholar 

  77. Wong-Riley MT. Energy metabolism of the visual system. Eye Brain. 2010;2:99–116. https://doi.org/10.2147/EB.S9078.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Reiter CE, Gardner TW. Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res. 2003;22(4):545–62.

    Article  CAS  PubMed  Google Scholar 

  79. Reiter CE, Wu X, Sandirasegarane L, Nakamura M, Gilbert KA, Singh RS, et al. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes. 2006;55(4):1148–56.

    Article  CAS  PubMed  Google Scholar 

  80. Arden GB. The absence of diabetic retinopathy in patients with retinitis pigmentosa: implications for pathophysiology and possible treatment. Br J Ophthalmol. 2001;85(3):366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. de Gooyer TE, Stevenson KA, Humphries P, Simpson DA, Gardiner TA, Stitt AW. Retinopathy is reduced during experimental diabetes in a mouse model of outer retinal degeneration. Invest Ophthalmol Vis Sci. 2006;47(12):5561–8. https://doi.org/10.1167/iovs.06-0647.

    Article  PubMed  Google Scholar 

  82. Sternberg P Jr, Landers MB 3rd, Wolbarsht M. The negative coincidence of retinitis pigmentosa and proliferative diabetic retinopathy. Am J Ophthalmol. 1984;97(6):788–9.

    Article  PubMed  Google Scholar 

  83. Berkowitz BA, Kern TS, Bissig D, Patel P, Bhatia A, Kefalov VJ, et al. Systemic retinaldehyde treatment corrects retinal oxidative stress, rod dysfunction, and impaired visual performance in diabetic mice. Invest Ophthalmol Vis Sci. 2015;56(11):6294–303. https://doi.org/10.1167/iovs.15-16990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. • Bavinger JC, Dunbar GE, Stem MS, Blachley TS, Kwark L, Farsiu S, et al. The effects of diabetic retinopathy and pan-retinal photocoagulation on photoreceptor cell function as assessed by dark adaptometry. Invest Ophthalmol Vis Sci. 2016;57(1):208–17. https://doi.org/10.1167/iovs.15-17281. Clinical dark adaptometry demonstrated significant phtoreceptor and/or retinal pigment epithelial dysfunction in patients with DR, with abnormalities in dark adaption correlating to severity of disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arden GB, Sidman RL, Arap W, Schlingemann RO. Spare the rod and spoil the eye. Br J Ophthalmol. 2005;89(6):764–9. https://doi.org/10.1136/bjo.2004.062547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. •• Gross JG, Glassman AR, Liu D, Sun JK, Antoszyk AN, Baker CW, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2018;136(10):1138–48. https://doi.org/10.1001/jamaophthalmol.2018.3255. In this report of five-year outcomes in a pivotal trial conducted by the Diabetic Retinopathy Clinical Research Network, therapy with intravitreous ranibizumab was comparable with panretinal phocoagulation in the management of PDR.

    Article  PubMed  PubMed Central  Google Scholar 

  87. •• Sivaprasad S, Prevost AT, Vasconcelos JC, Riddell A, Murphy C, Kelly J, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet. 2017;389(10085):2193–203. https://doi.org/10.1016/S0140-6736(17)31193-5. This landmark study demonstrated that intraviteous aflibercept was comparable with panretinal photocoagulation in the management of PDR.

    Article  CAS  PubMed  Google Scholar 

  88. Scott IU, Jackson GR, Quillen DA, Larsen M, Klein R, Liao J, et al. Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in patients with severe nonproliferative or non-high-risk proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2014;132(5):535–43. https://doi.org/10.1001/jamaophthalmol.2014.93.

    Article  CAS  PubMed  Google Scholar 

  89. Stahel M, Becker M, Graf N, Michels S. Systemic interleukin 1beta inhibition in proliferative diabetic retinopathy: a prospective open-label study using canakinumab. Retina. 2016;36(2):385–91. https://doi.org/10.1097/IAE.0000000000000701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Group P-D, Aiello LP, Davis MD, Girach A, Kles KA, Milton RC, et al. Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. Ophthalmology. 2006;113(12):2221–30. https://doi.org/10.1016/j.ophtha.2006.07.032.

    Article  Google Scholar 

  91. • Simo R, Hernandez C, Porta M, Bandello F, Grauslund J, Harding SP, et al. Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy: results of the EUROCONDOR Clinical Trial. Diabetes. 2019;68(2):457–63. https://doi.org/10.2337/db18-0682. Topical therapy with brimonidine and somatostatin, two compounds with potential neuroprotective effects, was associated with decreased progression of neuroretinopathy endpoints in patients with diabetes.

    Article  CAS  PubMed  Google Scholar 

  92. Li F, Zhang L, Wang Y, Xu W, Jiao W, Ma A, et al. One-year outcome of conbercept therapy for diabetic macular edema. Curr Eye Res. 2018;43(2):218–23. https://doi.org/10.1080/02713683.2017.1379542.

    Article  CAS  PubMed  Google Scholar 

  93. Xu Y, Rong A, Xu W, Niu Y, Wang Z. Comparison of 12-month therapeutic effect of conbercept and ranibizumab for diabetic macular edema: a real-life clinical practice study. BMC Ophthalmol. 2017;17(1):158. https://doi.org/10.1186/s12886-017-0554-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Krishnadev N, Forooghian F, Cukras C, Wong W, Saligan L, Chew EY, et al. Subconjunctival sirolimus in the treatment of diabetic macular edema. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2011;249(11):1627–33. https://doi.org/10.1007/s00417-011-1694-9.

    Article  CAS  Google Scholar 

  95. • Sivaprasad S, Vasconcelos JC, Prevost AT, Holmes H, Hykin P, George S, et al. Clinical efficacy and safety of a light mask for prevention of dark adaptation in treating and preventing progression of early diabetic macular oedema at 24 months (CLEOPATRA): a multicentre, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6(5):382–91. https://doi.org/10.1016/S2213-8587(18)30036-6. This innovative phase 3 trial, light masks worn at night time were used to treat DME by reducing metabolic demands of photoreceptors in patients with diabetes. However, this therapy did not confer signficant benefits.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sjolie AK, Klein R, Porta M, Orchard T, Fuller J, Parving HH, et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet. 2008;372(9647):1385–93. https://doi.org/10.1016/S0140-6736(08)61411-7.

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen QD, Schachar RA, Nduaka CI, Sperling M, Basile AS, Klamerus KJ, et al. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study). Invest Ophthalmol Vis Sci. 2012;53(12):7666–74. https://doi.org/10.1167/iovs.12-9961.

    Article  CAS  PubMed  Google Scholar 

  98. Staurenghi G, Ye L, Magee MH, Danis RP, Wurzelmann J, Adamson P, et al. Darapladib, a lipoprotein-associated phospholipase A2 inhibitor, in diabetic macular edema: a 3-month placebo-controlled study. Ophthalmology. 2015;122(5):990–6. https://doi.org/10.1016/j.ophtha.2014.12.014.

    Article  PubMed  Google Scholar 

  99. de Andrade GC, de Oliveira Dias JR, Maia A, Farah ME, Meyer CH, Rodrigues EB. Intravitreal ziv-aflibercept for diabetic macular edema: 48-week outcomes. Ophthalmic Surg Lasers Imaging Retina. 2018;49(4):245–50. https://doi.org/10.3928/23258160-20180329-06.

    Article  PubMed  Google Scholar 

  100. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86. https://doi.org/10.1056/nejm199309303291401.

  101. Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63. https://doi.org/10.1007/s001250051594.

    Article  CAS  PubMed  Google Scholar 

  102. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9. https://doi.org/10.1056/nejm200002103420603.

  103. Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol. 1998;116(7):874–86.

  104. Feldman-Billard S, Larger E, Massin P. Standards for screening and surveillance of ocular complications in people with diabetes SFDsg. Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab. 2018;44(1):4–14. https://doi.org/10.1016/j.diabet.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  105. • Hernandez C, Bogdanov P, Corraliza L, Garcia-Ramirez M, Sola-Adell C, Arranz JA, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65(1):172–87. https://doi.org/10.2337/db15-0443. Topical or systemic administration of GLP-1RAs prevented diabetes-associated neurodegeneration and gliosis in this preclinical study performed in a mouse model of T2DM.

    Article  CAS  PubMed  Google Scholar 

  106. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  107. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Obrosova IG, Minchenko AG, Vasupuram R, White L, Abatan OI, Kumagai AK, et al. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes. 2003;52(3):864–71.

    Article  CAS  PubMed  Google Scholar 

  109. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Arch Ophthalmol. 1990;108(9):1234–44.

  110. Sun W, Oates PJ, Coutcher JB, Gerhardinger C, Lorenzi M. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes. 2006;55(10):2757–62. https://doi.org/10.2337/db06-0138.

    Article  CAS  PubMed  Google Scholar 

  111. Gardner TW, Antonetti DA. Ruboxistaurin for diabetic retinopathy. Ophthalmology. 2006;113(12):2135–6. https://doi.org/10.1016/j.ophtha.2006.09.003.

    Article  PubMed  Google Scholar 

  112. Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44. https://doi.org/10.1056/NEJMoa1001288.

    Article  CAS  PubMed  Google Scholar 

  113. Patel V, Rassam S, Newsom R, Wiek J, Kohner E. Retinal blood flow in diabetic retinopathy. BMJ. 1992;305(6855):678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Behl T, Kotwani A. Potential of angiotensin II receptor blockers in the treatment of diabetic retinopathy. Life Sci. 2017;176:1–9. https://doi.org/10.1016/j.lfs.2017.03.020.

    Article  CAS  PubMed  Google Scholar 

  115. Wang B, Wang F, Zhang Y, Zhao SH, Zhao WJ, Yan SL, et al. Effects of RAS inhibitors on diabetic retinopathy: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(4):263–74. https://doi.org/10.1016/s2213-8587(14)70256-6.

    Article  PubMed  Google Scholar 

  116. Chew EY, Klein ML, Ferris FL 3rd, Remaley NA, Murphy RP, Chantry K, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol. 1996;114(9):1079–84.

    Article  CAS  PubMed  Google Scholar 

  117. • Srinivasan S, Raman R, Kulothungan V, Swaminathan G, Sharma T. Influence of serum lipids on the incidence and progression of diabetic retinopathy and macular oedema: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study-II. Clin Exp Ophthalmol. 2017;45(9):894–900. https://doi.org/10.1111/ceo.12990. This observational study performed in South Asian volunteers with T2DM, serum cholesterol and triglyceride abnormalities were strongly correlated to DR progression and DME.

    Article  PubMed  Google Scholar 

  118. • Itoh H, Komuro I, Takeuchi M, Akasaka T, Daida H, Egashira Y, et al. Intensive treat-to-target statin therapy in high-risk Japanese patients with hypercholesterolemia and diabetic retinopathy: report of a randomized study. Diabetes Care. 2018;41(6):1275–84. https://doi.org/10.2337/dc17-2224. In this large, multicenter, randomized clinical trial, high-dose statin therapy to intensively decrease LDL-C levels was associated with a significant reduction in retinopathy endpoints.

    Article  CAS  PubMed  Google Scholar 

  119. Kang EY, Chen TH, Garg SJ, Sun CC, Kang JH, Wu WC, et al. Association of statin therapy with prevention of vision-threatening diabetic retinopathy. JAMA Ophthalmol. 2019;137:363. https://doi.org/10.1001/jamaophthalmol.2018.6399.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Keech AC, Mitchell P, Summanen PA, O’Day J, Davis TM, Moffitt MS, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97. https://doi.org/10.1016/s0140-6736(07)61607-9.

    Article  CAS  PubMed  Google Scholar 

  121. Chen Y, Hu Y, Lin M, Jenkins AJ, Keech AC, Mott R, et al. Therapeutic effects of PPARα agonists on diabetic retinopathy in type 1 diabetes models. Diabetes. 2013;62(1):261–72. https://doi.org/10.2337/db11-0413.

    Article  CAS  PubMed  Google Scholar 

  122. •• Hu J, Dziumbla S, Lin J, Bibli SI, Zukunft S, de Mos J, et al. Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature. 2017;552(7684):248–52. https://doi.org/10.1038/nature25013. Here, soluble epoxide hydrolase was identified as a pro-permeability factor in diabetic mouse models, operating by promoting DHA breakdown. Inhibition of this enzyme improved retinal barrier function, whereas its overexpression in Muller cells exacerbated retinal leakage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. •• Sala-Vila A, Diaz-Lopez A, Valls-Pedret C, Cofan M, Garcia-Layana A, Lamuela-Raventos RM, et al. Dietary marine omega-3 fatty acids and incident sight-threatening retinopathy in middle-aged and older individuals with type 2 diabetes: prospective investigation from the PREDIMED Trial. JAMA Ophthalmol. 2016;134(10):1142–9. https://doi.org/10.1001/jamaophthalmol.2016.2906. In this randomized trial among patients with T2DM, dietary supplementation with 500 mg/day of long chain PUFA was associated with a 48% relative reduction in risk of sight-threatening DR after a median follow-up of 6 years.

    Article  PubMed  Google Scholar 

  124. Tikhonenko M, Lydic TA, Opreanu M, Li Calzi S, Bozack S, McSorley KM, et al. N-3 polyunsaturated fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS One. 2013;8(1):e55177. https://doi.org/10.1371/journal.pone.0055177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Group ETDRSR. Early photocoagulation for diabetic retinopathy: ETDRS report number 9. Ophthalmology. 1991;98(5):766–85.

    Article  Google Scholar 

  126. Group DRSR. Photocoagulation treatment of proliferative diabetic retinopathy: clinical application of diabetic retinopathy study (DRS) findings, DRS report number 8. Ophthalmology. 1981;88(7):583–600.

    Article  Google Scholar 

  127. • Maturi RK, Glassman AR, Liu D, Beck RW, Bhavsar AR, Bressler NM, et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial. JAMA Ophthalmol. 2018;136(1):29–38. https://doi.org/10.1001/jamaophthalmol.2017.4914. Addition of a long-acting dexamethsone implant (0.7mg) to a regimen of ranibizumab injections was associated with superior anatomic outcomes compared with ranibizumab monotherapy in this 24-month analysis among patients with chronic DME. Patients who were pseudophakic at baseline demonstrated superior visual acuity outcomes in the combination therapy group.

    Article  PubMed  Google Scholar 

  128. Boyer DS, Yoon YH, Belfort R Jr, Bandello F, Maturi RK, Augustin AJ, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14. https://doi.org/10.1016/j.ophtha.2014.04.024.

    Article  PubMed  Google Scholar 

  129. Campochiaro PA, Brown DM, Pearson A, Ciulla T, Boyer D, Holz FG, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118(4):626–35.e2. https://doi.org/10.1016/j.ophtha.2010.12.028.

    Article  PubMed  Google Scholar 

  130. Fraser-Bell S, Lim LL, Campain A, Mehta H, Aroney C, Bryant J, et al. Bevacizumab or dexamethasone implants for DME: 2-year results (the BEVORDEX study). Ophthalmology. 2016;123(6):1399–401. https://doi.org/10.1016/j.ophtha.2015.12.012.

    Article  PubMed  Google Scholar 

  131. Cunha-Vaz J, Ashton P, Iezzi R, Campochiaro P, Dugel PU, Holz FG, et al. Sustained delivery fluocinolone acetonide vitreous implants: long-term benefit in patients with chronic diabetic macular edema. Ophthalmology. 2014;121(10):1892–903. https://doi.org/10.1016/j.ophtha.2014.04.019.

    Article  PubMed  Google Scholar 

  132. Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122(10):2044–52. https://doi.org/10.1016/j.ophtha.2015.06.017.

    Article  PubMed  Google Scholar 

  133. Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6). https://doi.org/10.3390/ijms19061816.

    Article  PubMed Central  Google Scholar 

  134. Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314(20):2137–46. https://doi.org/10.1001/jama.2015.15217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000;14(16):1983–91.

    CAS  PubMed  Google Scholar 

  136. Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K, et al. VEGF-initiated blood–retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci. 2001;42(10):2408–13.

    CAS  PubMed  Google Scholar 

  137. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–64. https://doi.org/10.1016/j.cell.2019.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47–71. https://doi.org/10.1146/annurev-pathol-012513-104720.

    Article  CAS  PubMed  Google Scholar 

  139. Wells JA, Glassman AR, Ayala AR, Jampol LM, Bressler NM, Bressler SB, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351–9. https://doi.org/10.1016/j.ophtha.2016.02.022.

    Article  PubMed  Google Scholar 

  140. Kiss S, Dugel PU, Khanani AM, Broder MS, Chang E, Sun GH, et al. Endophthalmitis rates among patients receiving intravitreal anti-VEGF injections: a USA claims analysis. Clin Ophthalmol. 2018;12:1625–35. https://doi.org/10.2147/opth.S169143.

    Article  Google Scholar 

  141. Patel S. Medicare spending on anti-vascular endothelial growth factor medications. Ophthalmol Retina. 2018;2(8):785–91. https://doi.org/10.1016/j.oret.2017.12.006.

    Article  PubMed  Google Scholar 

  142. Dugel PU, Jaffe GJ, Sallstig P, Warburton J, Weichselberger A, Wieland M, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124(9):1296–304. https://doi.org/10.1016/j.ophtha.2017.03.057.

    Article  PubMed  Google Scholar 

  143. Dugel PU, Koh A, Ogura Y, Jaffe G, Schmidt-Erfurth U, Brown D, et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology. 2019. https://doi.org/10.1016/j.ophtha.2019.04.017.

  144. Milam KE, Parikh SM. The angiopoietin-Tie2 signaling axis in the vascular leakage of systemic inflammation. Tissue Barriers. 2015;3(1–2):e957508. https://doi.org/10.4161/21688362.2014.957508.

    Article  CAS  PubMed  Google Scholar 

  145. Shen J, Frye M, Lee BL, Reinardy JL, McClung JM, Ding K, et al. Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. J Clin Invest. 2014;124(10):4564–76. https://doi.org/10.1172/jci74527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sahni J, Patel SS, Dugel PU, Khanani AM, Jhaveri CD, Wykoff CC, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-a with faricimab in diabetic macular edema: BOULEVARD phase 2 randomized trial. Ophthalmology. 2019. https://doi.org/10.1016/j.ophtha.2019.03.023.

    Article  PubMed  Google Scholar 

  147. Buehler A, Sitaras N, Favret S, Bucher F, Berger S, Pielen A, et al. Semaphorin 3F forms an anti-angiogenic barrier in outer retina. FEBS Lett. 2013;587(11):1650–5. https://doi.org/10.1016/j.febslet.2013.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Segarra M, Ohnuki H, Maric D, Salvucci O, Hou X, Kumar A, et al. Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. Blood. 2012;120(19):4104–15. https://doi.org/10.1182/blood-2012-02-410076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cerani A, Tetreault N, Menard C, Lapalme E, Patel C, Sitaras N, et al. Neuron-derived semaphorin 3A is an early inducer of vascular permeability in diabetic retinopathy via neuropilin-1. Cell Metab. 2013;18(4):505–18. https://doi.org/10.1016/j.cmet.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  150. Thomas J, Liu F, Link DC. Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol. 2002;9(3):183–9.

    Article  PubMed  Google Scholar 

  151. • Chakravarthy H, Navitskaya S, O’Reilly S, Gallimore J, Mize H, Beli E, et al. Role of acid sphingomyelinase in shifting the balance between proinflammatory and reparative bone marrow cells in diabetic retinopathy. Stem Cells. 2016;34(4):972–83. https://doi.org/10.1002/stem.2259. Acid sphingomyelinase was identified in this study as a key factor promoting aberrant vascular repair by bone marrow-derived hematopoietic stem cells in the diabetic milieu secondary to an upregulation of membrane ceramides. Inhibition of this enzyme corrected these defects in circulating stem cells and prevented pathology associated with DR in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017;56:148–65. https://doi.org/10.1016/j.preteyeres.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  153. Arden GB, Jyothi S, Hogg CH, Lee YF, Sivaprasad S. Regression of early diabetic macular oedema is associated with prevention of dark adaptation. Eye. 2011;25(12):1546–54. https://doi.org/10.1038/eye.2011.264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Arden GB, Gunduz MK, Kurtenbach A, Volker M, Zrenner E, Gunduz SB, et al. A preliminary trial to determine whether prevention of dark adaptation affects the course of early diabetic retinopathy. Eye. 2010;24(7):1149–55. https://doi.org/10.1038/eye.2009.328.

    Article  CAS  PubMed  Google Scholar 

  155. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  CAS  PubMed  Google Scholar 

  156. Alam NM, Mills WC, Wong AA, Douglas RM, Szeto HH, Prusky GT. A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech. 2015;8(7):701–10. https://doi.org/10.1242/dmm.020248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Aung MH, Park HN, Han MK, Obertone TS, Abey J, Aseem F, et al. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J Neurosci. 2014;34(3):726–36. https://doi.org/10.1523/JNEUROSCI.3483-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gastinger MJ, Singh RS, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci. 2006;47(7):3143–50. https://doi.org/10.1167/iovs.05-1376.

    Article  PubMed  Google Scholar 

  159. Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 2018;65:50–76. https://doi.org/10.1016/j.preteyeres.2018.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Eric Nudleman reports grants from the National Eye Institute (5K08EY028999-02). Rithwick Rajagopal reports grants from the National Eye Institute (K08EY025269) and grants from the Research to Prevent Blindness (Career Development Award).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rithwick Rajagopal.

Ethics declarations

Conflict of Interest

Avinash Honasoge, Eric Nudleman, Morton Smith, and Rithwick Rajagopal declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honasoge, A., Nudleman, E., Smith, M. et al. Emerging Insights and Interventions for Diabetic Retinopathy. Curr Diab Rep 19, 100 (2019). https://doi.org/10.1007/s11892-019-1218-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1218-2

Keywords

Navigation