Skip to main content

Advertisement

Log in

Biopsychosocial Factors Associated With Satisfaction and Sustained Use of Artificial Pancreas Technology and Its Components: a Call to the Technology Field

  • Psychosocial Aspects (SS Jaser, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Summarize biopsychosocial factors associated with using continuous glucose monitors (CGMs), insulin pumps, and artificial pancreas (AP) systems and provide a “call to the field” about their importance to technology uptake and maintained use.

Recent Findings

Insulin pumps and CGMs are becoming standard of care for individuals with type 1 diabetes (T1D). AP systems combining a CGM, insulin pump, and automated dosing algorithm are available for commercial use. Despite improved glycemic control with AP system use, numerous barriers exist which may limit their benefit. Studies on components of AP systems (pumps, CGMs) are limited and demonstrate mixed results of their impact on fear of hypoglycemia, adherence, quality of life, depression and anxiety, and diabetes distress. Studies examining biopsychological factors associated specifically with sustained use of AP systems are also sparse.

Summary

Biological, psychological and social impacts of AP systems have been understudied and the information they provide has not been capitalized upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. DeSalvo DJ, Miller KM, Hermann JM, Maahs DM, Hofer SE, Clements MA, et al. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: international comparison from the T1D exchange and DPV initiative. Pediatr Diabetes 2018.

  2. Miller KM, Foster NC, Beck RW, Bergenstal RM, DuBose SN, DiMeglio LA, et al. Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry. Diabetes Care. 2015;38(6):971–8.

    PubMed  Google Scholar 

  3. Sherr JL, Hermann JM, Campbell F, Foster NC, Hofer SE, Allgrove J, et al. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia. 2016;59(1):87–91.

    CAS  PubMed  Google Scholar 

  4. Facchinetti A. Continuous glucose monitoring sensors: past, present and future algorithmic challenges. Sensors (Basel). 2016;16(12):2093–104.

    Google Scholar 

  5. Petrie JR, Peters AL, Bergenstal RM, Holl RW, Fleming GA, Heinemann L. Improving the clinical value and utility of CGM systems: issues and recommendations : a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetologia. 2017;60(12):2319–28.

    PubMed  Google Scholar 

  6. Wadwa RP, Laffel LM, Shah VN, Garg SK. Accuracy of a factory-calibrated, real-time continuous glucose monitoring system during 10 days of use in youth and adults with diabetes. Diabetes Technol Ther. 2018;20(6):395–402.

    CAS  PubMed  Google Scholar 

  7. Shah VN, Laffel LM, Wadwa RP, Garg SK. Performance of a factory-calibrated real-time continuous glucose monitoring system utilizing an automated sensor applicator. Diabetes Technol Ther. 2018;20(6):428–33.

    CAS  PubMed  Google Scholar 

  8. Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19(3):155–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Messer LH, Forlenza GP, Wadwa RP, Weinzimer SA, Sherr JL, Hood KK, et al. The dawn of automated insulin delivery: a new clinical framework to conceptualize insulin administration. Pediatr Diabetes. 2018;19(1):14–7.

    PubMed  Google Scholar 

  10. Forlenza GP, Shulman DI, Wood MA, Bailey TS, Bode BW, Buckingham B, et al. Overnight to early-morning glycemic outcomes in children using the MiniMed™ 670G hybrid closed-loop (HCL) system. Diabetes. 2018;67(S1):W204.

    Google Scholar 

  11. Polonsky WH, Hessler D. What are the quality of life-related benefits and losses associated with real-time continuous glucose monitoring? A survey of current users. Diabetes Technol Ther. 2013;15(4):295–301.

    PubMed  Google Scholar 

  12. Messer LH, Berget C, Beatson C, Polsky S, Forlenza GP. Preserving skin integrity with chronic device use in diabetes. Diabetes Technol Ther. 2018;20(S2):S254–s64.

    PubMed  Google Scholar 

  13. Wadwa RP, Fiallo-Scharer R, Vanderwel B, Messer LH, Cobry E, Chase HP. Continuous glucose monitoring in youth with type 1 diabetes. Diabetes Technol Ther. 2009;11(Suppl 1):S83–91.

    CAS  PubMed  Google Scholar 

  14. Giani E, Snelgrove R, Volkening LK, Laffel LM. Continuous glucose monitoring (CGM) adherence in youth with type 1 diabetes: associations with biomedical and psychosocial variables. J Diabetes Sci Technol. 2017;11(3):476–83.

    PubMed  Google Scholar 

  15. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study G, Beck RW, Buckingham B, Miller K, Wolpert H, Xing D, et al. Factors predictive of use and of benefit from continuous glucose monitoring in type 1 diabetes. Diabetes Care. 2009;32(11):1947–53.

    Google Scholar 

  16. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study G. Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the Juvenile Diabetes Research Foundation continuous glucose monitoring (JDRF-CGM) trial. Diabetes Care. 2010;33(1):17–22.

    Google Scholar 

  17. Forlenza GP, Buckingham B, Maahs DM. Progress in diabetes technology: developments in insulin pumps, continuous glucose monitors, and progress towards the artificial pancreas. J Pediatr. 2016;169:13–20.

    PubMed  Google Scholar 

  18. Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol Ther. 2016;18(Suppl 2):S3–S13.

    PubMed  Google Scholar 

  19. Tanenbaum ML, Hanes SJ, Miller KM, Naranjo D, Bensen R, Hood KK. Diabetes device use in adults with type 1 diabetes: barriers to uptake and potential intervention targets. Diabetes Care. 2017;40(2):181–7.

    PubMed  Google Scholar 

  20. Battelino T, Conget I, Olsen B, Schutz-Fuhrmann I, Hommel E, Hoogma R, et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia. 2012;55(12):3155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruedy KJ, Parkin CG, Riddlesworth TD, Graham C, Group DS. Continuous glucose monitoring in older adults with type 1 and type 2 diabetes using multiple daily injections of insulin: results from the DIAMOND trial. J Diabetes Sci Technol. 2017;11(6):1138–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. •• Beck RW, Riddlesworth T, Ruedy K, Ahmann A, Bergenstal R, Haller S, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA. 2017;317(4):371–8 A large randomized clinical trial showing the clinical benefit of reduction in glycemic control in individuals with T1D using continuous glucose monitors compared to those who do not.

    CAS  PubMed  Google Scholar 

  23. Beck RW, Riddlesworth TD, Ruedy K, Ahmann A, Haller S, Kruger D, et al. Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections: a randomized trial. Ann Intern Med. 2017;167(6):365–74.

    PubMed  Google Scholar 

  24. Riddlesworth T, Price D, Cohen N, Beck RW. Hypoglycemic event frequency and the effect of continuous glucose monitoring in adults with type 1 diabetes using multiple daily insulin injections. Diabetes Ther. 2017;8(4):947–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bergenstal RM, Rosenstock J, Bastyr EJ 3rd, Prince MJ, Qu Y, Jacober SJ. Lower glucose variability and hypoglycemia measured by continuous glucose monitoring with novel long-acting insulin LY2605541 versus insulin glargine. Diabetes Care. 2014;37(3):659–65.

    CAS  PubMed  Google Scholar 

  26. Secher AL, Stage E, Ringholm L, Barfred C, Damm P, Mathiesen ER. Real-time continuous glucose monitoring as a tool to prevent severe hypoglycaemia in selected pregnant women with type 1 diabetes—an observational study. Diabet Med. 2014;31(3):352–6.

    CAS  PubMed  Google Scholar 

  27. Hermanides J, Devries JH. Sensor-augmented insulin pump more effective than multiple daily insulin injections for reducing HbA1C in people with poorly controlled type 1 diabetes. Evid Based Med. 2011;16(2):46–8.

    PubMed  Google Scholar 

  28. Beck RW, Riddlesworth TD, Ruedy KJ, Kollman C, Ahmann AJ, Bergenstal RM, et al. Effect of initiating use of an insulin pump in adults with type 1 diabetes using multiple daily insulin injections and continuous glucose monitoring (DIAMOND): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(9):700–8.

    PubMed  Google Scholar 

  29. Ives B, Sikes K, Urban A, Stephenson K, Tamborlane WV. Practical aspects of real-time continuous glucose monitors: the experience of the Yale Children’s Diabetes Program. Diabetes Educ. 2010;36(1):53–62.

    PubMed  Google Scholar 

  30. Messer L, Ruedy K, Xing D, Coffey J, Englert K, Caswell K, et al. Educating families on real time continuous glucose monitoring: the DirecNet navigator pilot study experience. Diabetes Educ. 2009;35(1):124–35.

    PubMed  PubMed Central  Google Scholar 

  31. Englert K, Ruedy K, Coffey J, Caswell K, Steffen A, Levandoski L, et al. Skin and adhesive issues with continuous glucose monitors: a sticky situation. J Diabetes Sci Technol. 2014;8(4):745–51.

    PubMed  PubMed Central  Google Scholar 

  32. Berg AK, Olsen BS, Thyssen JP, Zachariae C, Simonsen AB, Pilgaard K, et al. High frequencies of dermatological complications in children using insulin pumps or sensors. Pediatr Diabetes. 2018;19(4):733–40.

    CAS  PubMed  Google Scholar 

  33. Binder E, Lange O, Edlinger M, Meraner D, Abt D, Moser C, et al. Frequency of dermatological side effects of continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2015;123(4):260–4.

    CAS  Google Scholar 

  34. Cope JU, Samuels-Reid JH, Morrison AE. Pediatric use of insulin pump technology: a retrospective study of adverse events in children ages 1-12 years. J Diabetes Sci Technol. 2012;6(5):1053–9.

    PubMed  PubMed Central  Google Scholar 

  35. Heinemann L, Krinelke L. Insulin infusion set: the Achilles heel of continuous subcutaneous insulin infusion. J Diabetes Sci Technol. 2012;6(4):954–64.

    PubMed  PubMed Central  Google Scholar 

  36. Feig DS, Donovan LE, Corcoy R, Murphy KE, Amiel SA, Hunt KF, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet. 2017;390(10110):2347–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Polonsky WH, Hessler D, Ruedy KJ, Beck RW, Group DS. The impact of continuous glucose monitoring on markers of quality of life in adults with type 1 diabetes: further findings from the DIAMOND randomized clinical trial. Diabetes Care. 2017;40(6):736–41.

    PubMed  Google Scholar 

  38. Polonsky WH, Fisher L, Hessler D, Edelman SV. Investigating hypoglycemic confidence in type 1 and type 2 diabetes. Diabetes Technol Ther. 2017;19(2):131–6.

    CAS  PubMed  Google Scholar 

  39. Weissberg-Benchell J, Antisdel-Lomaglio J, Seshadri R. Insulin pump therapy: a meta-analysis. Diabetes Care. 2003;26(4):1079–87.

    PubMed  Google Scholar 

  40. Nimri R, Weintrob N, Benzaquen H, Ofan R, Fayman G, Phillip M. Insulin pump therapy in youth with type 1 diabetes: a retrospective paired study. Pediatrics. 2006;117(6):2126–31.

    PubMed  Google Scholar 

  41. Patton SR, Clements MA. Psychological reactions associated with continuous glucose monitoring in youth. J Diabetes Sci Technol. 2016;10(3):656–61.

    PubMed  PubMed Central  Google Scholar 

  42. Mauras N, Beck R, Xing D, Ruedy K, Buckingham B, Tansey M, et al. A randomized clinical trial to assess the efficacy and safety of real-time continuous glucose monitoring in the management of type 1 diabetes in young children aged 4 to <10 years. Diabetes Care. 2012;35(2):204–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heller S, White D, Lee E, Lawton J, Pollard D, Waugh N, et al. A cluster randomised trial, cost-effectiveness analysis and psychosocial evaluation of insulin pump therapy compared with multiple injections during flexible intensive insulin therapy for type 1 diabetes: the REPOSE trial. Health Technol Assess. 2017;21(20):1–278.

    PubMed  PubMed Central  Google Scholar 

  44. Rubin RR, Peyrot M, Group SS. Health-related quality of life and treatment satisfaction in the sensor-augmented pump therapy for A1C reduction 3 (STAR 3) trial. Diabetes Technol Ther. 2012;14(2):143–51.

    PubMed  PubMed Central  Google Scholar 

  45. Cemeroglu AP, Stone R, Kleis L, Racine MS, Postellon DC, Wood MA. Use of a real-time continuous glucose monitoring system in children and young adults on insulin pump therapy: patients’ and caregivers’ perception of benefit. Pediatr Diabetes. 2010;11(3):182–7.

    CAS  PubMed  Google Scholar 

  46. Hirsch IB, Abelseth J, Bode BW, Fischer JS, Kaufman FR, Mastrototaro J, et al. Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study. Diabetes Technol Ther. 2008;10(5):377–83.

    CAS  PubMed  Google Scholar 

  47. Chase HP, Beck RW, Xing D, Tamborlane WV, Coffey J, Fox LA, et al. Continuous glucose monitoring in youth with type 1 diabetes: 12-month follow-up of the Juvenile Diabetes Research Foundation continuous glucose monitoring randomized trial. Diabetes Technol Ther. 2010;12(7):507–15.

    CAS  PubMed  Google Scholar 

  48. O'Connell MA, Donath S, Cameron FJ. Poor adherence to integral daily tasks limits the efficacy of CSII in youth. Pediatr Diabetes. 2011;12(6):556–9.

    CAS  PubMed  Google Scholar 

  49. Datye KA, Boyle CT, Simmons J, Moore DJ, Jaser SS, Sheanon N, et al. Timing of meal insulin and its relation to adherence to therapy in type 1 diabetes. J Diabetes Sci Technol. 2018;12(2):349–55.

    CAS  PubMed  Google Scholar 

  50. Tanenbaum ML, Adams RN, Hanes SJ, Barley RC, Miller KM, Mulvaney SA, et al. Optimal use of diabetes devices: clinician perspectives on barriers and adherence to device use. J Diabetes Sci Technol. 2017;11(3):484–92.

    PubMed  PubMed Central  Google Scholar 

  51. Driscoll KA, Johnson SB, Hogan J, Gill E, Wright N, Deeb LC. Insulin bolusing software: the potential to optimize health outcomes in type 1 diabetes mellitus. J Diabetes Sci Technol. 2013;7(3):646–52.

    PubMed  PubMed Central  Google Scholar 

  52. Patton SR, Driscoll KA, Clements MA. Adherence to insulin pump behaviors in young children with type 1 diabetes mellitus. J Diabetes Sci Technol. 2017;11(1):87–91.

    CAS  PubMed  Google Scholar 

  53. Driscoll KA, Wang Y, Bennett Johnson S, Lynch R, Stephens H, Willbur K, et al. White coat adherence in pediatric patients with type 1 diabetes who use insulin pumps. J Diabetes Sci Technol. 2016;10(3):724–9.

    PubMed  PubMed Central  Google Scholar 

  54. Driscoll KA, Johnson SB, Wang Y, Tang Y, Gill EC, Mitchell A, et al. Importance of manually entering blood glucose readings when wireless-compatible meters are not being used with an insulin pump. J Diabetes Sci Technol. 2013;7(4):898–903.

    PubMed  PubMed Central  Google Scholar 

  55. Driscoll KA, Johnson SB, Tang Y, Yang F, Deeb LC, Silverstein JH. Does blood glucose monitoring increase prior to clinic visits in children with type 1 diabetes? Diabetes Care. 2011;34(10):2170–3.

    PubMed  PubMed Central  Google Scholar 

  56. Driscoll KA, Johnson SB, Wang Y, Wright N, Deeb LC. Blood glucose monitoring before and after type 1 diabetes clinic visits. J Pediatr Psychol (in press). 2017.

  57. Barnard KD, Lloyd CE, Skinner TC. Systematic literature review: quality of life associated with insulin pump use in type 1 diabetes. Diabet Med. 2007;24(6):607–17.

    CAS  PubMed  Google Scholar 

  58. Hirose M, Beverly EA, Weinger K. Quality of life and technology: impact on children and families with diabetes. Current diabetes reports. 2012;12(6):711–20.

    PubMed  PubMed Central  Google Scholar 

  59. Hommel E, Olsen B, Battelino T, Conget I, Schütz-Fuhrmann I, Hoogma R, et al. Impact of continuous glucose monitoring on quality of life, treatment satisfaction, and use of medical care resources: analyses from the SWITCH study. Acta Diabetol. 2014;51(5):845–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Beck RW, Lawrence JM, Laffel L, Wysocki T, Xing D, Huang ES, et al. Quality-of-life measures in children and adults with type 1 diabetes: Juvenile Diabetes Research Foundation Continuous Glucose Monitoring randomized trial. Diabetes Care. 2010;33(10):2175–7.

    PubMed  Google Scholar 

  61. Markowitz JT, Pratt K, Aggarwal J, Volkening LK, Laffel LM. Psychosocial correlates of continuous glucose monitoring use in youth and adults with type 1 diabetes and parents of youth. Diabetes Technol Ther. 2012;14(6):523–6.

    PubMed  PubMed Central  Google Scholar 

  62. Rubin RR, Peyrot M. Treatment satisfaction and quality of life for an integrated continuous glucose monitoring/insulin pump system compared to self-monitoring plus an insulin pump. J Diabetes Sci Technol. 2009;3(6):1402–10.

    PubMed  PubMed Central  Google Scholar 

  63. Hilliard ME, Goeke-Morey M, Cogen FR, Henderson C, Streisand R. Predictors of diabetes-related quality of life after transitioning to the insulin pump. J Pediatr Psychol. 2009;34(2):137–46.

    PubMed  Google Scholar 

  64. Nuboer R, Borsboom GJ, Zoethout JA, Koot HM, Bruining J. Effects of insulin pump vs. injection treatment on quality of life and impact of disease in children with type 1 diabetes mellitus in a randomized, prospective comparison. Pediatr Diabetes. 2008;9(4 Pt 1):291–6.

    PubMed  Google Scholar 

  65. Lind M, Polonsky W, Hirsch IB, Heise T, Bolinder J, Dahlqvist S, et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA. 2017;317(4):379–87.

    CAS  PubMed  Google Scholar 

  66. Wong JC, Dolan LM, Yang TT, Hood KK. Insulin pump use and glycemic control in adolescents with type 1 diabetes: predictors of change in method of insulin delivery across two years. Pediatr Diabetes. 2015;16(8):592–9.

    CAS  PubMed  Google Scholar 

  67. Fisher L, Hessler D, Polonsky WH, Masharani U, Guzman S, Bowyer V, et al. T1-REDEEM: a randomized controlled trial to reduce diabetes distress among adults with type 1 diabetes. Diabetes Care. 2018;41:1862–9.

    PubMed  Google Scholar 

  68. Giani E, Snelgrove R, Volkening LK, Laffel LM. Continuous glucose monitoring (CGM) adherence in youth with type 1 diabetes: associations with biomedical and psychosocial variables. J Diabetes Sci Technol. 2017;11(3):476–83.

    PubMed  PubMed Central  Google Scholar 

  69. Rashotte J, Tousignant K, Richardson C, Fothergill-Bourbonnais F, Nakhla MM, Olivier P, et al. Living with sensor-augmented pump therapy in type 1 diabetes: adolescents’ and parents’ search for harmony. Can J Diabetes. 2014;38(4):256–62.

    PubMed  Google Scholar 

  70. Ritholz MD, Atakov-Castillo A, Beste M, Beverly EA, Leighton A, Weinger K, et al. Psychosocial factors associated with use of continuous glucose monitoring. Diabet Med. 2010;27(9):1060–5.

    CAS  PubMed  Google Scholar 

  71. Garmo A, Hornsten A, Leksell J. The pump was a saviour for me.’ Patients’ experiences of insulin pump therapy. Diabet Med. 2013;30(6):717–23.

    CAS  PubMed  Google Scholar 

  72. Seereiner S, Neeser K, Weber C, Schreiber K, Habacher W, Rakovac I, et al. Attitudes towards insulin pump therapy among adolescents and young people. Diabetes Technol Ther. 2010;12(1):89–94.

    PubMed  Google Scholar 

  73. James S, Perry L, Gallagher R, Lowe J. Diabetes educators: perceived experiences, supports and barriers to use of common diabetes-related technologies. J Diabetes Sci Technol. 2016;10(5):1115–21.

    PubMed  PubMed Central  Google Scholar 

  74. Hirsch IB. Clinical review: realistic expectations and practical use of continuous glucose monitoring for the endocrinologist. J Clin Endocrinol Metab. 2009;94(7):2232–8.

    CAS  PubMed  Google Scholar 

  75. Pickup JC, Ford Holloway M, Samsi K. Real-time continuous glucose monitoring in type 1 diabetes: a qualitative framework analysis of patient narratives. Diabetes Care. 2015;38(4):544–50.

    CAS  PubMed  Google Scholar 

  76. Wong JC, Boyle C, DiMeglio LA, Mastrandrea LD, Abel KL, Cengiz E, et al. Evaluation of pump discontinuation and associated factors in the T1D exchange clinic registry. J Diabetes Sci Technol. 2017;11(2):224–32.

    PubMed  PubMed Central  Google Scholar 

  77. Wysocki T, Hirschfeld F, Miller L, Izenberg N, Dowshen SA, Taylor A, et al. Consideration of insulin pumps or continuous glucose monitors by adolescents with type 1 diabetes and their parents: stakeholder engagement in the design of web-based decision aids. The Diabetes educator. 2016;42(4):395–407.

    PubMed  Google Scholar 

  78. Shivers JP, Mackowiak L, Anhalt H, Zisser H. “Turn it off!”: diabetes device alarm fatigue considerations for the present and the future. J Diabetes Sci Technol. 2013;7(3):789–94.

    PubMed  PubMed Central  Google Scholar 

  79. Messer LH, Johnson R, Driscoll KA, Jones J. Best friend or spy: a qualitative meta-synthesis on the impact of continuous glucose monitoring on life with type 1 diabetes. Diabet Med. 2018;35(4):409–18.

    CAS  PubMed  Google Scholar 

  80. Kropff J, DeJong J, Del Favero S, Place J, Messori M, Coestier B, et al. Psychological outcomes of evening and night closed-loop insulin delivery under free living conditions in people with type 1 diabetes: a 2-month randomized crossover trial. Diabet Med. 2017;34(2):262–71.

    CAS  PubMed  Google Scholar 

  81. Kerr D, Wizemann E, Senstius J, Zacho M, Ampudia-Blasco FJ. Stability and performance of rapid-acting insulin analogs used for continuous subcutaneous insulin infusion: a systematic review. J Diabetes Sci Technol. 2013;7(6):1595–606.

    PubMed  PubMed Central  Google Scholar 

  82. Wheeler BJ, Donaghue KC, Heels K, Ambler GR. Family perceptions of insulin pump adverse events in children and adolescents. Diabetes Technol Ther. 2014;16(4):204–7.

    CAS  PubMed  Google Scholar 

  83. Wheeler BJ, Heels K, Donaghue KC, Reith DM, Ambler GR. Insulin pump-associated adverse events in children and adolescents—a prospective study. Diabetes Technol Ther. 2014;16(9):558–62.

    CAS  PubMed  Google Scholar 

  84. Ross PL, Milburn J, Reith DM, Wiltshire E, Wheeler BJ. Clinical review: insulin pump-associated adverse events in adults and children. Acta Diabetol. 2015;52(6):1017–24.

    CAS  PubMed  Google Scholar 

  85. Kovatchev B, Anderson S, Heinemann L, Clarke W. Comparison of the numerical and clinical accuracy of four continuous glucose monitors. Diabetes Care. 2008;31(6):1160–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Christiansen M, Bailey T, Watkins E, Liljenquist D, Price D, Nakamura K, et al. A new-generation continuous glucose monitoring system: improved accuracy and reliability compared with a previous-generation system. Diabetes Technol Ther. 2013;15(10):881–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Laffel L. Improved accuracy of continuous glucose monitoring systems in pediatric patients with diabetes mellitus: results from two studies. Diabetes Technol Ther. 2016;18(Suppl 2):S223–33.

    PubMed  Google Scholar 

  88. Faccioli S, Del Favero S, Visentin R, Bonfanti R, Iafusco D, Rabbone I, et al. Accuracy of a CGM sensor in pediatric subjects with type 1 diabetes. Comparison of three insertion sites: arm, abdomen, and gluteus. J Diabetes Sci Technol. 2017;11(6):1147–54.

    PubMed  PubMed Central  Google Scholar 

  89. Vloemans AF, van Beers CAJ, de Wit M, Cleijne W, Rondags SM, Geelhoed-Duijvestijn PH, et al. Keeping safe. Continuous glucose monitoring (CGM) in persons with type 1 diabetes and impaired awareness of hypoglycaemia: a qualitative study. Diabet Med. 2017;34(10):1470–6.

    CAS  PubMed  Google Scholar 

  90. Ruiz JL, Sherr JL, Cengiz E, Carria L, Roy A, Voskanyan G, et al. Effect of insulin feedback on closed-loop glucose control: a crossover study. J Diabetes Sci Technol. 2012;6(5):1123–30.

    PubMed  PubMed Central  Google Scholar 

  91. Doyle FJ 3rd, Huyett LM, Lee JB, Zisser HC, Dassau E. Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care. 2014;37(5):1191–7.

    PubMed  PubMed Central  Google Scholar 

  92. Steil GM. Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J Diabetes Sci Technol. 2013;7(6):1621–31.

    PubMed  PubMed Central  Google Scholar 

  93. Bequette BW. Algorithms for a closed-loop artificial pancreas: the case for model predictive control. J Diabetes Sci Technol. 2013;7(6):1632–43.

    PubMed  PubMed Central  Google Scholar 

  94. Forlenza GP, Cameron FM, Ly TT, Lam D, Howsmon DP, Baysal N, et al. Fully closed-loop multiple model probabilistic predictive controller artificial pancreas performance in adolescents and adults in a supervised hotel setting. Diabetes Technol Ther. 2018;20(5):335–43.

    PubMed  Google Scholar 

  95. Weisman A, Bai JW, Cardinez M, Kramer CK, Perkins BA. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5(7):501–12.

    CAS  PubMed  Google Scholar 

  96. Bekiari E, Kitsios K, Thabit H, Tauschmann M, Athanasiadou E, Karagiannis T, et al. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ (Clinical research ed). 2018;361:k1310 Review of 40 studies using the artificial pancreas showing their clinical benefit of increasing time in range both in real-world settings and well-controlled research settings.

    Google Scholar 

  97. Bergenstal RM, Garg S, Weinzimer SA, Buckingham BA, Bode BW, Tamborlane WV, et al. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA. 2016;316(13):1407–8.

    PubMed  Google Scholar 

  98. Messer LH, Forlenza GP, Sherr JL, Wadwa RP, Buckingham BA, Weinzimer SA, et al. Optimizing hybrid closed-loop therapy in adolescents and emerging adults using the MiniMed 670G system. Diabetes Care. 2018;41(4):789–96.

    PubMed  Google Scholar 

  99. Berget C, Messer LH, Pyle L, Westfall E, Forlenza GP, Driscoll KA. Real-world use of hybrid closed-loop therapy in pediatric patients with type 1 diabetes. Diabetes. 2018;67(S1):A254.

    Google Scholar 

  100. Barnard KD, Venkat MV, Close K, Heinemann L, Weissberg-Benchell J, Hood KK, et al. PsychDT working group: report psychosocial aspects of artificial pancreas systems. J Diabetes Sci Technol. 2015;9(4):925–8.

    PubMed  PubMed Central  Google Scholar 

  101. Iturralde E, Tanenbaum ML, Hanes SJ, Suttiratana SC, Ambrosino JM, Ly TT, et al. Expectations and attitudes of individuals with type 1 diabetes after using a hybrid closed loop system. The Diabetes educator. 2017;43(2):223–32.

    PubMed  Google Scholar 

  102. Farrington C. Hacking diabetes: DIY artificial pancreas systems. Lancet Diabetes Endocrinol. 2017;5(5):332.

    PubMed  Google Scholar 

  103. Weissberg-Benchell J, Hood K, Laffel L, Heinemann L, Ball D, Kowalski A, et al. Toward development of psychosocial measures for automated insulin delivery. J Diabetes Sci Technol. 2016;10(3):799–801.

    PubMed  Google Scholar 

Download references

Funding

Dr. Forlenza’s work on this project was funded in part by an NIH K12 grant (K12DK094712-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Driscoll.

Ethics declarations

Conflict of Interest

Cari Berget and Kimberly Driscoll declare that they have no conflict of interest.

Dr. Forlenza reports research support from the NIH NIDDK, Medtronic, Tandem, Insulet, Dexcom, Abbott, Novo Nordisk, Type Zero, and Beta Bionics. Dr. Forlenza has served as an advisory board member for Dexcom, a paid consultant for Medtronic and Abbott, and a speaker for Tandem, Dexcom, and Medtronic.

Mrs. Messer is a Contract Product Trainer for Medtronic Diabetes and has received speaking honoraria from Tandem Diabetes Care.

Dr. Wadwa reports research support from Lexicon, Dexcom, Bigfoot Biomedical, MannKind Corporation, Novo Nordisk, Helmsley Charitable Trust and NIH/NIDDK, advisory board consulting fees from Eli Lilly and Company, and consulting fees from Dexcom.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Psychosocial Aspects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forlenza, G.P., Messer, L.H., Berget, C. et al. Biopsychosocial Factors Associated With Satisfaction and Sustained Use of Artificial Pancreas Technology and Its Components: a Call to the Technology Field. Curr Diab Rep 18, 114 (2018). https://doi.org/10.1007/s11892-018-1078-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1078-1

Keywords

Navigation