Current Diabetes Reports

, Volume 9, Issue 6, pp 473–479 | Cite as

The natural progression of kidney injury in young type 1 diabetic patients



Diabetes is the most common cause of end-stage renal disease in industrialized countries. This article describes the structural changes in early diabetic nephropathy and the relationship with renal functional parameters, blood pressure, and albumin excretion. The detrimental influence of sustained hyperglycemia and/or glycemic fluctuations on renal structural change has been well documented. Tight glycemic control is paramount to preventing the development, and even the regression, of renal lesions. As much of the renal injury from diabetes occurs in clinical silence before symptoms or laboratory findings of renal injury are evident, finding early markers of risk is imperative so that nephropathy can be prevented. Currently, the only clinical surrogate marker of diabetic renal injury available is microalbuminuria. However, given the reports of regression of microalbuminuria back to normoalbuminuria, the reliability of this tool as an indicator of risk has been questioned. The need for alternative, noninvasive surrogate markers is described in this report.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    U.S. Renal Data System: USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2008.Google Scholar
  2. 2.
    O’Connor A, Schelling J: Diabetes and the kidney. Am J Kidney Dis 2005, 46:766–773.CrossRefPubMedGoogle Scholar
  3. 3.
    Krolewski AS, Warram JH, Christlieb AR, et al.: The changing natural history of nephropathy in type I diabetes. Am J Med 1985, 78:785–794.CrossRefPubMedGoogle Scholar
  4. 4.
    Andersen AR, Christiansen JS, Andersen JK, et al.: Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983, 25:496–501.CrossRefPubMedGoogle Scholar
  5. 5.
    Borch-Johnsen K, Kreiner S: Proteinuria: value as predictor of cardiovascular mortality in insulin dependent diabetes mellitus. Brit Med J (Clin Res Ed) 1987, 294:1651–1654.CrossRefGoogle Scholar
  6. 6.
    Chavers BM, Mauer SM, Ramsey RC, Steffes MW: Relationship between retinal and glomerular lesions in patients with type I diabetes mellitus. Diabetes 1994, 43:441–446.CrossRefPubMedGoogle Scholar
  7. 7.
    Klein R, Klein BK, Magli YL, et al.: An alternative method of grading diabetic retinopathy. Invest Ophthalmol Vis Sci 1986, 93:1183–1186.Google Scholar
  8. 8.
    Fioretto P, Steffes M, Mauer S: Glomerular structure in nonproteinuric insulin-dependent diabetic patients with various levels of albuminuria. Diabetes 1994, 43:1358–1364.CrossRefPubMedGoogle Scholar
  9. 9.
    Chavers BM, Bilous RW, Ellis EN, et al.: Glomerular lesions and urinary albumin excretion in type I diabetic patients without overt proteinuria. N Engl J Med 1989, 320:966–970.PubMedGoogle Scholar
  10. 10.
    Viberti GC, Hill RD, Jarrett RJ, et al.: Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1982, 1:1430–1432.CrossRefPubMedGoogle Scholar
  11. 11.
    Parving HH, Oxenbøll B, Svendsen PA, et al.: Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 1982, 100:550–555.Google Scholar
  12. 12.
    Mogensen CE, Christensen CK: Predicting diabetes nephropathy in insulin dependent patients. N Engl J Med 1984, 311:89–93.PubMedGoogle Scholar
  13. 13.
    Osterby R: Glomerular structural changes in type 1 (insulin-dependent) diabetes mellitus: causes, consequences, and prevention. Diabetologia 1992, 35:803–812.CrossRefPubMedGoogle Scholar
  14. 14.
    Mauer SM, Steffes MW, Brown DM: The kidney in diabetes. Am J Med 1981, 70:603–612.CrossRefPubMedGoogle Scholar
  15. 15.
    Osterby R, Hartmann A, Nyengaard JR, Bangstad HJ: Development of renal structural lesions in type-1 diabetic patients with microalbuminuria. Observations by light microscopy in 8-year follow-up biopsies. Virchows Arch 2002, 440:94–101.CrossRefPubMedGoogle Scholar
  16. 16.
    Fioretto P, Steffes M, Sutherland D, Mauer M: Sequential renal biopsies in insulin-dependent diabetic patients: structural factors associated with clinical progression. Kidney Int 1995, 48:1929–1935.CrossRefPubMedGoogle Scholar
  17. 17.
    Torbjornsdotter TB, Perrin NE, Jaremko GA, Berg UB: Widening of foot processes in normoalbuminuric adolescents with type 1 diabetes. Pediatr Nephrol 2005, 20:750–758.CrossRefPubMedGoogle Scholar
  18. 18.
    Ellis EN, Warady BA, Wood EG, et al.: Renal structuralfunctional relationships in early diabetes mellitus. Pediatr Nephrol 1997, 11:584–591.CrossRefPubMedGoogle Scholar
  19. 19.
    Mauer M, Drummond K: The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes 2002, 51:1572–1579.CrossRefPubMedGoogle Scholar
  20. 20.
    Drummond K, Mauer M: The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 2002, 51:1580–1587.CrossRefPubMedGoogle Scholar
  21. 21.
    Steinke J, Mauer M, for the International Diabetic Nephropathy Study Group: Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients. Pediatr Endocrinol Rev 2008, 5:958–963.PubMedGoogle Scholar
  22. 22.
    Drummond K, Kramer M, Suissa S, et al.: Effects of duration and age at onset of type 1 diabetes on preclinical manifestations of nephropathy. Diabetes 2003, 52:1818–1824.CrossRefPubMedGoogle Scholar
  23. 23.
    Steinke JM, Mauer M, for the International Diabetic Nephropathy Study Group: Baseline predictors of the rates of renal structural change in young, type 1 diabetic patients. Presented at the European Diabetic Nephropathy Study Group Meeting. Helsinki, Finland; May 19–20, 2006.Google Scholar
  24. 24.
    Vogler C, McAdams A, Homan S: Glomerular basement membrane and lamina densa in infants and children: an ultrastructural evaluation. Ped Pathol 1987, 7:527–534.CrossRefGoogle Scholar
  25. 25.
    Caramori M, Kim Y, Huang C, et al.: Cellular basis of diabetic nephropathy: 1. study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes 2002, 51:506–513.CrossRefPubMedGoogle Scholar
  26. 26.
    Berg UB, Torbjornsdotter TB, Jaremko G, Thalme B: Kidney morphological changes in relation to long-term renal function and metabolic control in adolescents with IDDM. Diabetologia 1998, 41:1047–1056.CrossRefPubMedGoogle Scholar
  27. 27.
    Perrin N, Torbjornsdotter T, Jaremko G, Berg U: The course of diabetic glomerulopathy in patients with type I diabetes: a 6-year follow-up with serial biopsies. Kidney Int 2006, 69:699–705.CrossRefPubMedGoogle Scholar
  28. 28.
    Perrin N, Torbjornsdotter T, Jaremko G, Berg U: Follow-up of kidney biopsies in normoalbuminuric patients with type 1 diabetes. Pediatr Nephrol 2004, 19:1004–1013.CrossRefPubMedGoogle Scholar
  29. 29.
    Steffes M, Sutherland D, Goetz F, et al.: Studies of kidney and muscle biopsy specimens from identical twins discordant for type I diabetes mellitus. N Engl J Med 1985, 312:1282–1287.PubMedCrossRefGoogle Scholar
  30. 30.
    Lurbe E, Redon J, Kesani A, et al.: Increase in nocturnal blood pressure and progression to microalbuminuria in type I diabetes. N Engl J Med 2002, 347:797–805.CrossRefPubMedGoogle Scholar
  31. 31.
    Lurbe E, Redon J, Pascual JM, et al.: The spectrum of circadian blood pressure changes in type 1 diabetic patients. J Hyperten 2001, 19:1421–1428.CrossRefGoogle Scholar
  32. 32.
    Cotroneo P, Manto A, Todaro L, et al.: Hyperfiltration in patients with type 1 diabetes mellitus: a prevalence study. Clin Nephrol 1998, 50:214–217.PubMedGoogle Scholar
  33. 33.
    Chiarelli F, Verrotti A, Morgese G: Glomerular hyperfiltration increases the risk of developing microalbuminuria in diabetic children. Pediatr Nephrol 1995, 9:154–158.CrossRefPubMedGoogle Scholar
  34. 34.
    Mogensen CE, Schmitz O: The diabetic kidney: from hyperfiltration and microalbuminuria to end-stage renal failure. Med Clin North Am 1988, 72:1465–1492.PubMedGoogle Scholar
  35. 35.
    Rudberg S, Persson B, Dahlquist G: Increased glomerular filtration rate as a predictor of diabetic nephropathy: an 8-year prospective study. Kidney Int 1992, 41:822–828.CrossRefPubMedGoogle Scholar
  36. 36.
    Amin R, Turner C, VanAken S, et al.: The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: the Oxford Regional Prospective Study. Kidney Int 2005, 68:1740–1749.CrossRefPubMedGoogle Scholar
  37. 37.
    Caramori ML, Fioretto P, Mauer M: Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients. Diabetes 2003, 52:1036–1040.CrossRefPubMedGoogle Scholar
  38. 38.
    Yip JW, Jones SL, Wiseman MJ, et al.: Glomerular hyperfiltration in the prediction of nephropathy in IDDM: a 10-year follow-up study. Diabetes 1996, 45:1729–1733.CrossRefPubMedGoogle Scholar
  39. 39.
    Lervang HH, Jensen S, Brochner-Mortensen J, Ditzel J: Early glomerular hyperfiltration and the later development of nephropathy in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1988, 31:723–729.CrossRefPubMedGoogle Scholar
  40. 40.
    Ficociello L, Perkins B, Roshan B, et al.: Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care 2009, 32:889–893.CrossRefPubMedGoogle Scholar
  41. 41.
    Mauer SM, Steffes MW, Ellis EN, et al.: Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984, 74:1143–1155.CrossRefPubMedGoogle Scholar
  42. 42.
    Ellis EN, Steffes MW, Goetz FC, et al.: Glomerular filtration surface in type I diabetes mellitus. Kidney Int 1986, 29:889–894.CrossRefPubMedGoogle Scholar
  43. 43.
    Mauer SM, Sutherland DE, Steffes MW: Relationship of systemic blood pressure to nephropathology in insulin-dependent diabetes mellitus. Kidney Int 1992, 41:736–740.CrossRefPubMedGoogle Scholar
  44. 44.
    Barbosa J, Steffes MW, Sutherland DE, et al.: Effect of glycemic control on early diabetic renal lesions. A 5-year randomized controlled clinical trial of insulin-dependent diabetic kidney transplant recipients. JAMA 1994, 272:600–606.CrossRefPubMedGoogle Scholar
  45. 45.
    Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group [no authors listed]. Kidney Int 1995, 47:1703–1720.Google Scholar
  46. 46.
    Bangstad H, Osterby R, Dahl-Jorgensen K, et al.: Improvement of blood glucose control in IDDM patients retards the progression of morphological changes in early diabetic nephropathy. Diabetologia 1994, 37:483–490.CrossRefPubMedGoogle Scholar
  47. 47.
    Bangstad HJ, Osterby R, Rudberg S, et al.: Kidney function and glomerulopathy over 8 years in young patients with type I (insulin-dependent) diabetes mellitus and microalbuminuria. Diabetologia 2002, 45:253–261.CrossRefPubMedGoogle Scholar
  48. 48.
    Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group [no authors listed]. N Engl J Med 2000, 342:381–389. (Published erratum appears in N Engl J Med 2000 342:1376.)Google Scholar
  49. 49.
    American Diabetes Association: Standards of medical care for patients with diabetes mellitus. Diabetes Care 2003, 26(Suppl 1):S33–S50.Google Scholar
  50. 50.
    Ceriello A, Morocutti A, Mercuri F, et al.: Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes 2000, 49:2170–2177.CrossRefPubMedGoogle Scholar
  51. 51.
    Beisswenger P, Drummond K, Nelson R, et al.: Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 2005, 54:3274–3281.CrossRefPubMedGoogle Scholar
  52. 52.
    Hirsch I, Brownlee M: Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complications 2005, 19:178–181.CrossRefPubMedGoogle Scholar
  53. 53.
    Monnier L, Mas E, Ginet C, et al.: Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006, 14:1681–1687.CrossRefGoogle Scholar
  54. 54.
    Fioretto P, Steffes M, Sutherland D, et al.: Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998, 339:69–75.CrossRefPubMedGoogle Scholar
  55. 55.
    Norgaard K, Feldt-Rasmussen B, Borch-Johnsen K, et al.: Prevalence of hypertension in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1990, 33:407–410.CrossRefPubMedGoogle Scholar
  56. 56.
    Le Floch J, Christin S, Bertherat J, et al.: Blood pressure and microvascular complications in type 1 (insulin dependent) diabetic patients without hypertension. Diabete Metab 1990, 16:26–29.PubMedGoogle Scholar
  57. 57.
    Parving H, Hommel E, Mathiesen E, et al.: Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. Br Med J (Clin Res Ed) 1988, 296:156–160.CrossRefGoogle Scholar
  58. 58.
    Mathiesen ER, Saurbrey N, Hommel E, Parving HH: Prevalence of microalbuminuria in children with type I (insulin-dependent) diabetes mellitus. Diabetologia 1986, 29:640–643.CrossRefPubMedGoogle Scholar
  59. 59.
    Torbjörnsdotter T, Jaremko G, Berg U: Ambulatory blood pressure and heart rate in relation to kidney structure and metabolic control in adolescents with type 1 diabetes. Diabetologia 2001, 44:865–873.CrossRefPubMedGoogle Scholar
  60. 60.
    Cooper ME, Allen TJ, Macmillan P, et al.: Genetic hypertension accelerates nephropathy in the streptozotocin diabetic rat. Am J Hypertens 1988, 1:5–10.PubMedGoogle Scholar
  61. 61.
    Cooper ME, Allen TJ, Macmillan PA, et al.: Enalapril retards glomerular basement membrane thickening and albuminuria in the diabetic rat. Diabetologia 1989, 32:326–328.CrossRefPubMedGoogle Scholar
  62. 62.
    Mathiesen EH, Hommel E, Hansen E, et al.: Randomised controlled trial of long term efficacy of captopril on preservation of kidney function in normotensive patients with insulin dependent diabetes and microalbuminuria. BMJ 1999, 319:24–25.PubMedGoogle Scholar
  63. 63.
    Mathiesen ER, Hommel E, Giese J, Parving HH: Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ 1991, 303:81–87.CrossRefPubMedGoogle Scholar
  64. 64.
    Hommel E, Mathiesen ER, Parving HH: Antihypertensive treatment postpones end-stage renal failure in diabetic nephropathy. Scand J Urol Nephrol Suppl 1988, 108:47.PubMedGoogle Scholar
  65. 65.
    Lewis EJ, Hunsicker LG, Clarke WR, et al.: Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001, 345:851–860.CrossRefPubMedGoogle Scholar
  66. 66.
    Brenner BM, Cooper ME, de Zeeuw D, et al.: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001, 345:861–869.CrossRefPubMedGoogle Scholar
  67. 67.
    Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group [no authors listed]. Lancet 1997, 349:1787–1792.Google Scholar
  68. 68.
    Parving HH, Lehnert H, Brochner-Mortensen J, et al.: The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001, 345:870–878.CrossRefPubMedGoogle Scholar
  69. 69.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group N Engl J Med 1993, 329:1456–1462. (Published erratum appears in N Engl J Med 1993, 330:152.)Google Scholar
  70. 70.
    United States Renal Data System (USRDS): 2005 Annual Data Report. Bethesda, MD: US Department of Health and Human Services, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2005.Google Scholar
  71. 71.
    Mauer M, Zinman B, Gardner R, et al.: Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 2009, 361:40–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Zerbini G, Bonfanti R, Meschi F, et al.: Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes 2006, 55:2620–2625.CrossRefPubMedGoogle Scholar
  73. 73.
    Walker JD, Close CF, Jones SL, et al.: Glomerular structure in type-1 (insulin-dependent) diabetic patients with normo- and microalbuminuria. Kidney Int 1992, 41:741–748.CrossRefPubMedGoogle Scholar
  74. 74.
    Steinke J, Sinaiko A, Kramer M, et al.: The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 2005, 54:2164–2171.CrossRefPubMedGoogle Scholar
  75. 75.
    Forsblom CM, Groop PH, Ekstrand A, Groop LC: Predictive value of microalbuminuria in patients with insulin-dependent diabetes of long duration. BMJ 1992, 305:1051–1053.CrossRefPubMedGoogle Scholar
  76. 76.
    Perkins B, Ficociello L, Silva K, et al.: Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003, 348:2285–2293.CrossRefPubMedGoogle Scholar
  77. 77.
    Hovind P, Tarnow L, Rossing P, et al.: Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 2004, 328:1105.CrossRefPubMedGoogle Scholar
  78. 78.
    Schultz C, Neil H, Dalton R, Dunger D: Risk of nephropathy can be detected before the onset of microalbuminuria during the early years after diagnosis of type 1 diabetes. Diabetes Care 2000, 23:1811–1815.CrossRefPubMedGoogle Scholar
  79. 79.
    Meier M, Kaiser T, Herrman A, et al.: Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. Journal Diabetes Complications 2005, 19:223–232.CrossRefGoogle Scholar
  80. 80.
    Rossing K, Mischak H, Dakna M, et al.: Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 2008, 19:1283–1290.CrossRefPubMedGoogle Scholar
  81. 81.
    Merchant M, Perkins B, Boratyn G, et al.: Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol 2009, 20:2065–2074.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Pediatric Nephrology, Dialysis and TransplantationHelen Devos Children’s Hospital and ClinicsGrand RapidsUSA

Personalised recommendations