Skip to main content

Advertisement

Log in

Asthma in Cystic Fibrosis: Definitions and Implications of This Overlap Syndrome

  • Asthma (V Ortega, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cystic fibrosis (CF) is a multisystem, autosomal recessive disease that leads to progressive loss of lung function. Respiratory symptoms for both CF and asthma include cough, wheezing, and dyspnea. There is debate within the CF community on how to best define and distinguish CF-asthma overlap syndrome (CFAOS) from asthma-like features, though CFAOS is well-recognized. We aim to review the epidemiology, diagnosis, and treatment of asthma in CF and explore areas where further research is needed.

Recent Findings

There has been considerable improvement in the understanding and treatment of asthma over the past two decades leading to novel therapies such as biologic agents that target the airway inflammation in asthmatics based on their asthma phenotype. These therapies are being studied in CFAOS and are promising treatments.

Summary

This review provides a comprehensive overview of the definition, epidemiology, diagnosis, and current treatment of CFAOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABPA:

Allergic bronchopulmonary aspergillosis

CF:

Cystic fibrosis

CFAOS:

CF-asthma overlap syndrome

CFF:

Cystic Fibrosis Foundation

CFTR:

Cystic fibrosis transmembrane conductance regulator

CPET:

Cardiopulmonary exercise test

ESCF:

Epidemiologic Study of Cystic Fibrosis

FEV1 :

Forced expiratory volume in 1 s

ICS:

Inhaled corticosteroid

LABA:

Long-acting beta2-agonist

LAMA:

Long-acting muscarinic antagonist

PEFR:

Peak expiratory flow rate

SABA:

Short-acting beta2-agonist

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, et al. Diagnosis of cystic fibrosis: consensus guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181S:S4–S15.e1. https://doi.org/10.1016/j.jpeds.2016.09.064.

    Article  PubMed  Google Scholar 

  2. Willis-Owen SAG, Cookson WOC, Moffatt MF. The genetics and genomics of asthma. Annu Rev Genomics Hum Genet. 2018;19:223–46. https://doi.org/10.1146/annurev-genom-083117-021651.

    Article  CAS  PubMed  Google Scholar 

  3. Shrine N, Portelli MA, John C, Soler Artigas M, Bennett N, Hall R, et al. Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respir Med. 2019;7(1):20–34. https://doi.org/10.1016/S2213-2600(18)30389-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2020. Available from: www.ginasthma.org. (2020). Accessed.

  5. Ren CL, Konstan MW, Rosenfeld M, Pasta DJ, Millar SJ, Morgan WJ, et al. Early childhood wheezing is associated with lower lung function in cystic fibrosis. Pediatr Pulmonol. 2014;49(8):745–50. https://doi.org/10.1002/ppul.22894.

    Article  PubMed  Google Scholar 

  6. Morgan WJ, Butler SM, Johnson CA, Colin AA, FitzSimmons SC, Geller DE, et al. Epidemiologic study of cystic fibrosis: design and implementation of a prospective, multicenter, observational study of patients with cystic fibrosis in the U.S. and Canada. Pediatr Pulmonol. 1999;28(4):231–41. https://doi.org/10.1002/(sici)1099-0496(199910)28:4<231::aid-ppul1>3.0.co;2-2.

    Article  CAS  PubMed  Google Scholar 

  7. Mogayzel PJ, Naureckas ET, Robinson KA, Mueller G, Hadjiliadis D, Hoag JB, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–9. https://doi.org/10.1164/rccm.201207-1160oe.

    Article  PubMed  Google Scholar 

  8. Kent BD, Lane SJ, van Beek EJ, Dodd JD, Costello RW, Tiddens HA. Asthma and cystic fibrosis: a tangled web. Pediatr Pulmonol. 2014;49(3):205–13. https://doi.org/10.1002/ppul.22934.

    Article  PubMed  Google Scholar 

  9. Balfour-Lynn IM, Elborn JS. “CF asthma”: what is it and what do we do about it? Thorax. 2002;57(8):742–8. https://doi.org/10.1136/thorax.57.8.742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brand PL. Bronchodilators in cystic fibrosis. J R Soc Med. 2000;93(Suppl 38):37–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. • Adam RJ, Hisert KB, Dodd JD, Grogan B, Launspach JL, Barnes JK, et al. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities. JCI Insight. 2016;1(4):e86183. https://doi.org/10.1172/jci.insight.86183Comment: Study showing potentiation of CFTR improved airway distensibility and vascular tone.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stanbrook MB, Corey M, Tullis DE. The repeatability of forced expiratory volume measurements in adults with cystic fibrosis. Chest. 2004;125(1):150–5. https://doi.org/10.1378/chest.125.1.150.

    Article  PubMed  Google Scholar 

  13. Legge JS. Peak-expiratory-flow meters and asthma self-management. Lancet. 1996;347(9017):1709–10. https://doi.org/10.1016/s0140-6736(96)90802-8.

    Article  CAS  PubMed  Google Scholar 

  14. Tiddens HA, Donaldson SH, Rosenfeld M, Pare PD. Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively? Pediatr Pulmonol. 2010;45(2):107–17. https://doi.org/10.1002/ppul.21154.

    Article  PubMed  Google Scholar 

  15. Eggleston PA, Rosenstein BJ, Stackhouse CM, Mellits ED, Baumgardner RA. A controlled trial of long-term bronchodilator therapy in cystic fibrosis. Chest. 1991;99(5):1088–92. https://doi.org/10.1378/chest.99.5.1088.

    Article  CAS  PubMed  Google Scholar 

  16. Conway SP, Watson A. Nebulised bronchodilators, corticosteroids, and rhDNase in adult patients with cystic fibrosis. Thorax. 1997;52(Suppl 2):S64–8. https://doi.org/10.1136/thx.52.2008.s64.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levine H, Cohen-Cymberknoh M, Klein N, Hoshen M, Mussaffi H, Stafler P, et al. Reversible airway obstruction in cystic fibrosis: common, but not associated with characteristics of asthma. J Cyst Fibros. 2016;15(5):652–9. https://doi.org/10.1016/j.jcf.2016.01.003.

    Article  PubMed  Google Scholar 

  18. • Cook DP, Rector MV, Bouzek DC, Michalski AS, Gansemer ND, Reznikov LR, et al. Cystic Fibrosis transmembrane conductance regulator in sarcoplasmic reticulum of airway smooth muscle. Implications for airway contractility. Am J Respir Crit Care Med. 2016;193(4):417–26. https://doi.org/10.1164/rccm.201508-1562OCComment: Study using newborn pigs (wild type and CF) to evaluate the role of CFTR expressed in airway smooth muscle on airway dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furlan LL, Ribeiro JD, Bertuzzo CS, Salomao Junior JB, Souza DRS, Marson FAL. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis. J Pediatr. 2017;93(6):639–48. https://doi.org/10.1016/j.jped.2017.03.005.

    Article  Google Scholar 

  20. van Haren EH, Lammers JW, Festen J, van Herwaarden CL. Bronchial vagal tone and responsiveness to histamine, exercise and bronchodilators in adult patients with cystic fibrosis. Eur Respir J. 1992;5(9):1083–8.

    PubMed  Google Scholar 

  21. Sanchez I, Powell RE, Pasterkamp H. Wheezing and airflow obstruction during methacholine challenge in children with cystic fibrosis and in normal children. Am Rev Respir Dis. 1993;147(3):705–9. https://doi.org/10.1164/ajrccm/147.3.705.

    Article  CAS  PubMed  Google Scholar 

  22. McCuaig S, Martin JG. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis. Lancet Respir Med. 2013;1(2):137–47. https://doi.org/10.1016/s2213-2600(12)70058-9.

    Article  PubMed  Google Scholar 

  23. • Matusovsky OS, Kachmar L, Ijpma G, Panariti A, Benedetti A, Martin JG, et al. Contractile properties of intrapulmonary airway smooth muscle in cystic fibrosis. Am J Respir Cell Mol Biol. 2019;60(4):434–44. https://doi.org/10.1165/rcmb.2018-0005OCComment: Study exploring the role of airway smooth muscle in airway dysfunction in CF.

    Article  CAS  PubMed  Google Scholar 

  24. Eggleston PA, Rosenstein BJ, Stackhouse CM, Alexander MF. Airway hyperreactivity in cystic fibrosis. Clinical correlates and possible effects on the course of the disease. Chest. 1988;94(2):360–5. https://doi.org/10.1378/chest.94.2.360.

    Article  CAS  PubMed  Google Scholar 

  25. Alothman GA, Ho B, Alsaadi MM, Ho SL, O’Drowsky L, Louca E, et al. Bronchial constriction and inhaled colistin in cystic fibrosis. Chest. 2005;127(2):522–9. https://doi.org/10.1378/chest.127.2.522.

    Article  CAS  PubMed  Google Scholar 

  26. Dwyer TJ, Alison JA, McKeough ZJ, Daviskas E, Bye PTP. Effects of exercise on respiratory flow and sputum properties in patients with cystic fibrosis. Chest. 2011;139(4):870–7. https://doi.org/10.1378/chest.10-1158.

    Article  PubMed  Google Scholar 

  27. Dwyer TJ, Zainuldin R, Daviskas E, Bye PT, Alison JA. Effects of treadmill exercise versus Flutter(R) on respiratory flow and sputum properties in adults with cystic fibrosis: a randomised, controlled, cross-over trial. BMC Pulmo Med. 2017;17(1):14. https://doi.org/10.1186/s12890-016-0360-8.

    Article  Google Scholar 

  28. Kirkby SE, Hayes D Jr, Parsons JP, Wisely CE, Kopp B, McCoy KS, et al. Eucapnic voluntary hyperventilation to detect exercise-induced bronchoconstriction in cystic fibrosis. Lung. 2015;193(5):733–8. https://doi.org/10.1007/s00408-015-9745-3.

    Article  CAS  PubMed  Google Scholar 

  29. Tobin MJ, Maguire O, Reen D, Tempany E, Fitzgerald MX. Atopy and bronchial reactivity in older patients with cystic fibrosis. Thorax. 1980;35(11):807–13. https://doi.org/10.1136/thx.35.11.807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becker JW, Burke W, McDonald G, Greenberger PA, Henderson WR, Aitken ML. Prevalence of allergic bronchopulmonary aspergillosis and atopy in adult patients with cystic fibrosis. Chest. 1996;109(6):1536–40. https://doi.org/10.1378/chest.109.6.1536.

    Article  CAS  PubMed  Google Scholar 

  31. Wilmott RW. The relationship between atopy and cystic fibrosis. Clin Rev Allergy. 1991;9(1–2):29–46. https://doi.org/10.1007/978-1-4612-0475-6_3.

    Article  CAS  PubMed  Google Scholar 

  32. Robroeks CM, Rosias PP, van Vliet D, Jobsis Q, Yntema JB, Brackel HJ, et al. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children. Pediatr Allergy Immunol. 2008;19(7):652–9. https://doi.org/10.1111/j.1399-3038.2007.00693.x.

    Article  PubMed  Google Scholar 

  33. Korten I, Liechti M, Singer F, Hafen G, Rochat I, Anagnostopoulou P, et al. Lower exhaled nitric oxide in infants with cystic fibrosis compared to healthy controls. J Cyst Fibros. 2018;17(1):105–8. https://doi.org/10.1016/j.jcf.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  34. National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol. 2007;120(5 Suppl):S94–138. https://doi.org/10.1016/j.jaci.2007.09.043.

    Article  Google Scholar 

  35. Konstan MW, Butler SM, Schidlow DV, Morgan WJ, Julius JR, Johnson CA. Patterns of medical practice in cystic fibrosis: part II. Use of therapies. Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Pediatr Pulmonol. 1999;28(4):248–54. https://doi.org/10.1002/(sici)1099-0496(199910)28:4<248::aid-ppul3>3.0.co;2-n.

    Article  CAS  PubMed  Google Scholar 

  36. König P, Poehler J, Barbero GJ. A placebo-controlled, double-blind trial of the long-term effects of albuterol administration in patients with cystic fibrosis. Pediatr Pulmonol. 1998;25(1):32–6. https://doi.org/10.1002/(sici)1099-0496(199801)25:1<32::aid-ppul3>3.0.co;2-q.

    Article  PubMed  Google Scholar 

  37. Halfhide C, Evans HJ, Couriel J. Inhaled bronchodilators for cystic fibrosis. Cochrane Database Syst Rev. 2005;(4):Cd003428. https://doi.org/10.1002/14651858.CD003428.pub2.

  38. Durzo A. The GOAL study. Canadian family physician Medecin de famille canadien. 2006;52(2):187–9.

  39. Hordvik NL, Sammut PH, Judy CG, Colombo JL. Effects of standard and high doses of salmeterol on lung function of hospitalized patients with cystic fibrosis. Pediatr Pulmonol. 1999;27(1):43–53. https://doi.org/10.1002/(sici)1099-0496(199901)27:1<43::aid-ppul9>3.0.co;2-e.

    Article  CAS  PubMed  Google Scholar 

  40. Bargon J, Viel K, Dauletbaev N, Wiewrodt R, Buhl R. Short-term effects of regular salmeterol treatment on adult cystic fibrosis patients. Eur Respir J. 1997;10(10):2307–11. https://doi.org/10.1183/09031936.97.10102307.

    Article  CAS  PubMed  Google Scholar 

  41. Smith S, Edwards CT. Long-acting inhaled bronchodilators for cystic fibrosis. Cochrane Database Syst Rev. 2017;12:CD012102. https://doi.org/10.1002/14651858.CD012102.pub2.

    Article  PubMed  Google Scholar 

  42. • Kuruvilla ME, Lee FE-H, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–33. https://doi.org/10.1007/S12016-018-8712-1Comment: Comprehensive review of the complex biologic processes in asthma.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Erdem E, Ersu R. Inhaled corticosteroids in treatment of cystic fibrosis. Antiinflamm Antiallergy Agents Med Chem. 2012;11(3):206–9. https://doi.org/10.2174/1871523011202030206.

    Article  CAS  PubMed  Google Scholar 

  44. van Haren EH, Lammers JW, Festen J, Heijerman HG, Groot CA, van Herwaarden CL. The effects of the inhaled corticosteroid budesonide on lung function and bronchial hyperresponsiveness in adult patients with cystic fibrosis. Respir Med. 1995;89(3):209–14. https://doi.org/10.1016/0954-6111(95)90249-x.

    Article  PubMed  Google Scholar 

  45. De Boeck K, Vermeulen F, Wanyama S, Thomas M. Inhaled corticosteroids and lower lung function decline in young children with cystic fibrosis. Eur Respir J. 2011;37(5):1091–5. https://doi.org/10.1183/09031936.00077210.

    Article  CAS  PubMed  Google Scholar 

  46. Balfour-Lynn IM, Lees B, Hall P, Phillips G, Khan M, Flather M, et al. Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am J Respir Crit Care Med. 2006;173(12):1356–62. https://doi.org/10.1164/rccm.200511-1808OC.

    Article  CAS  PubMed  Google Scholar 

  47. Balfour-Lynn IM, Welch K, Smith S. Inhaled corticosteroids for cystic fibrosis. Cochrane Database Syst Rev. 2019;7(7):Cd001915. https://doi.org/10.1002/14651858.CD001915.pub6.

    Article  PubMed  Google Scholar 

  48. Ng D, Salvio F, Hicks G. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev. 2004;(2):Cd002314. https://doi.org/10.1002/14651858.CD002314.pub2.

  49. Schmitt-Grohé S, Eickmeier O, Schubert R, Bez C, Zielen S. Anti-inflammatory effects of montelukast in mild cystic fibrosis. Ann Allergy Asthma Immunol. 2002;89(6):599–605. https://doi.org/10.1016/s1081-1206(10)62108-4.

    Article  PubMed  Google Scholar 

  50. Schumock GT, Lee TA, Joo MJ, Valuck RJ, Stayner LT, Gibbons RD. Association between leukotriene-modifying agents and suicide: what is the evidence? Drug Saf. 2011;34(7):533–44. https://doi.org/10.2165/11587260-000000000-00000.

    Article  PubMed  Google Scholar 

  51. Konstan MW, Sharma A, Moroni-Zentgraf P, Wang F, Koker P. Safety, tolerability, and plasma exposure of tiotropium Respimat® in children and adults with cystic fibrosis. J Aerosol Med Pulm Drug Deliv. 2015;28(2):137–44. https://doi.org/10.1089/jamp.2013.1115.

    Article  CAS  PubMed  Google Scholar 

  52. Bradley JM, Koker P, Deng Q, Moroni-Zentgraf P, Ratjen F, Geller DE, et al. Testing two different doses of tiotropium Respimat® in cystic fibrosis: phase 2 randomized trial results. PLoS One. 2014;9(9):e106195. https://doi.org/10.1371/journal.pone.0106195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ratjen F, Koker P, Geller DE, Langellier-Cocteaux B, Le Maulf F, Kattenbeck S, et al. Tiotropium Respimat in cystic fibrosis: phase 3 and pooled phase 2/3 randomized trials. J Cyst Fibros. 2015;14(5):608–14. https://doi.org/10.1016/j.jcf.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  54. Brandt C, Thronicke A, Roehmel JF, Krannich A, Staab D, Schwarz C. Impact of long-term tiotropium bromide therapy on annual lung function decline in adult patients with cystic fibrosis. PLoS One. 2016;11(6):e0158193. https://doi.org/10.1371/journal.pone.0158193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kew KM, Dahri K. Long-acting muscarinic antagonists (LAMA) added to combination long-acting beta2-agonists and inhaled corticosteroids (LABA/ICS) versus LABA/ICS for adults with asthma. Cochrane Database Syst Rev. 2016;(1):Cd011721. https://doi.org/10.1002/14651858.CD011721.pub2.

  56. Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin N Am. 2016;42(1):15–31, vii. https://doi.org/10.1016/j.rdc.2015.08.002.

    Article  Google Scholar 

  57. Eigen H, Rosenstein BJ, FitzSimmons S, Schidlow DV. A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr. 1995;126(4):515–23. https://doi.org/10.1016/s0022-3476(95)70343-8.

    Article  CAS  PubMed  Google Scholar 

  58. Dovey M, Aitken ML, Emerson J, McNamara S, Waltz DA, Gibson RL. Oral corticosteroid therapy in cystic fibrosis patients hospitalized for pulmonary exacerbation: a pilot study. Chest. 2007;132(4):1212–8. https://doi.org/10.1378/chest.07-0843.

    Article  CAS  PubMed  Google Scholar 

  59. Ghdifan S, Couderc L, Michelet I, Leguillon C, Masseline B, Marguet C. Bolus methylprednisolone efficacy for uncontrolled exacerbation of cystic fibrosis in children. Pediatrics. 2010;125(5):e1259–64. https://doi.org/10.1542/peds.2009-2042.

    Article  PubMed  Google Scholar 

  60. Hester KL, Powell T, Downey DG, Elborn JS, Jarad NA. Glucocorticoids as an adjuvant treatment to intravenous antibiotics for cystic fibrosis pulmonary exacerbations: a UK survey. J Cyst Fibros. 2007;6(4):311–3. https://doi.org/10.1016/j.jcf.2006.12.009.

    Article  CAS  PubMed  Google Scholar 

  61. Kapnadak SG, Dimango E, Hadjiliadis D, Hempstead SE, Tallarico E, Pilewski JM, et al. Cystic Fibrosis Foundation consensus guidelines for the care of individuals with advanced cystic fibrosis lung disease. J Cyst Fibros. 2020;19(3):344–54. https://doi.org/10.1016/j.jcf.2020.02.015.

    Article  PubMed  Google Scholar 

  62. Johnson N, Varughese B, De La Torre MA, Surani SR, Udeani G. A review of respiratory biologic agents in severe asthma. Cureus. 2019;11(9):e5690. https://doi.org/10.7759/cureus.5690.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Agache I, Rocha C, Beltran J, Song Y, Posso M, Solà I, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: a systematic review for the EAACI guidelines-recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1043–57. https://doi.org/10.1111/all.14235.

    Article  CAS  PubMed  Google Scholar 

  64. Thomson NC, Chaudhuri R. Omalizumab: clinical use for the management of asthma. Clin Med Insights. 2012;6:CCRPM.S7793. https://doi.org/10.4137/ccrpm.S7793.

    Article  Google Scholar 

  65. Humbert M, Beasley R, Ayres J, Slavin R, Hébert J, Bousquet J, et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005;60(3):309–16. https://doi.org/10.1111/j.1398-9995.2004.00772.x.

    Article  CAS  PubMed  Google Scholar 

  66. Braunstahl G-J, Leo J, Chen C-W, Maykut R, Georgiou P, Peachey G. The eXpeRience registry: monitoring the “real-world” effectiveness of omalizumab in allergic asthma. Eur Respir J. 2011;38(Suppl 55):3953.

    Google Scholar 

  67. Ching-Hsiung L, Shih-Lung C. A review of omalizumab for the management of severe asthma. Drug Design Dev Therapy. 2016;10:2369–78. https://doi.org/10.2147/DDDT.S112208.

    Article  Google Scholar 

  68. Ashkenazi M, Sity S, Sarouk I, Bat El Bar A, Dagan A, Bezalel Y, et al. Omalizumab in allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. J Asthma Allergy. 2018;11:101–7. https://doi.org/10.2147/JAA.S156049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Perisson C, Destruys L, Grenet D, Bassinet L, Derelle J, Sermet-Gaudelus I, et al. Omalizumab treatment for allergic bronchopulmonary aspergillosis in young patients with cystic fibrosis. Respir Med. 2017;133:12–5. https://doi.org/10.1016/j.rmed.2017.11.007.

    Article  PubMed  Google Scholar 

  70. Mazza JA, Lewis J, Gooyers T. A case report of ABPA, cystic fibrosis and asthma treated with omalizumab. World Allergy Organizat J. 2015;8(Suppl 1):A86-A. https://doi.org/10.1186/1939-4551-8-S1-A86.

    Article  Google Scholar 

  71. Deeks ED. Mepolizumab: a review in eosinophilic asthma. BioDrugs. 2016;30(4):361–70. https://doi.org/10.1007/s40259-016-0182-5.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang L, Borish L, Smith A, Somerville L, Albon D. Use of mepolizumab in adult patients with cystic fibrosis and an eosinophilic phenotype: case series. Allergy, Asthma Clin Immunol. 2020;16:3. https://doi.org/10.1186/s13223-019-0397-3.

    Article  CAS  Google Scholar 

  73. Bleecker ER, Wechsler ME, FitzGerald JM, Menzies-Gow A, Wu Y, Hirsch I, et al. Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. Eur Respir J. 2018;52(4):1800936. https://doi.org/10.1183/13993003.00936-2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tan LD, Bratt JM, Godor D, Louie S, Kenyon NJ. Benralizumab: a unique IL-5 inhibitor for severe asthma. J Asthma Allergy. 2016;9:71–81. https://doi.org/10.2147/JAA.S78049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31. https://doi.org/10.1056/NEJMoa1409547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663–72. https://doi.org/10.1056/NEJMoa1105185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381(19):1809–19. https://doi.org/10.1056/NEJMOA1908639Comment: Randomized, double-blind, plecebo controlled phase 3trail showing efficacy of triple combination therapy in patients with CF who have a single copy of Fdel508 mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Barrios.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Asthma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marion, C.R., Izquierdo, M., Hanes, H.C. et al. Asthma in Cystic Fibrosis: Definitions and Implications of This Overlap Syndrome. Curr Allergy Asthma Rep 21, 9 (2021). https://doi.org/10.1007/s11882-020-00985-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00985-7

Keywords

Navigation