Skip to main content
Log in

The Elevated-Temperature Strength Enhancement of a Low-Cost β Titanium Alloy Through Thermomechanically-Induced Phase Transformation

  • Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of temperature and thermomechanical loading on the tensile strength and hardness were studied for a rolled, low-cost metastable β titanium alloy, Ti-13Cr-1Fe-3Al (wt.%). Tensile tests were performed at temperatures between room temperature (RT) and 410°C. The results indicated that the ultimate tensile strength (UTS) decreased with increasing temperatures up to 300°C. However, the UTS was 1400 MPa at 410°C, which was approximately 150% higher than the RT UTS. It is believed that the formation of nanoscale ω and α precipitates, identified using transmission electron microscopy, hindered the dislocation motion, which resulted in the exceptionally high UTS at 410°C. However, ductility was maintained, as the elongation-to-failure (εf) was ~ 10% at 410°C. Dynamic mechanical analysis suggested that phase transformations occurred between 370°C–475°C. To evaluate the effect of the phase transformations on the hardness, the as-received material was heat treated at 400°C, 450°C, and 500°C for 2 h, which resulted in hardness values of approximately 340 Hv, 380 Hv, and 470 Hv, respectively. However, the greatest hardness value (500 Hv) was exhibited by the as-received material after it was tensile tested at 410°C. This suggested that both temperature and loading history affected the phase transformations. As all the samples exhibited a ductile fracture mode, this work indicates that it is possible to maintain both high strength and adequate εf for Ti-13Cr-1Fe-3Al (wt.%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Brozek, F. Sun, P. Vermaut, Y. Millet, A. Lenain, D. Embury, and F. Prima, Scr. Mater. 114, 60 (2016).

    Article  Google Scholar 

  2. T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima, and J. Soubeyroux, Scr. Mater. 58, 271 (2008).

    Article  Google Scholar 

  3. T. Grosdidier, Y. Combres, E. Gautier, and M. Phillipe, Metall. Mater. Trans. A 31, 1095 (2000).

    Article  Google Scholar 

  4. F. Sun, F. Prima, and T. Gloriant, Mater. Sci. Eng., A 527, 4262 (2010).

    Article  Google Scholar 

  5. M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P. Jaccques, and F. Prima, Scr. Mater. 66, 749 (2012).

    Article  Google Scholar 

  6. F. Sun, J. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laille, and F. Prima, Acta Mater. 61, 6406 (2013).

    Article  Google Scholar 

  7. F. Sun, J.Y. Zhang, P. Vermaut, D. Choudhuri, T. Alam, S.A. Mantri, P. Svec, T. Gloriant, P.J. Jacques, R. Banerjee, and F. Prima, Mater. Res. Lett. 5, 547 (2017).

    Article  Google Scholar 

  8. O.M. Ivasishin, P. Markovsky, Y. Matviychuk, S.L. Semiaitin, C. Ward, and S. Fox, J. Alloys Compd. 457, 296 (2008).

    Article  Google Scholar 

  9. S. Ankem and C.A. Greene, Mater. Sci. Eng., A 263, 127 (1999).

    Article  Google Scholar 

  10. G. Lütjering and J.C. Williams, Titanium (Berlin: Springer, 2003).

    Book  Google Scholar 

  11. I. Weiss and S.L. Semiatin, Mater. Sci. Eng., A 243, 46 (1998).

    Article  Google Scholar 

  12. G.S. Rohrer, Structure and Bonding in Crystalline Materials (Cambridge: Cambridge University Press, 2001).

    Book  Google Scholar 

  13. J.I. Qazi, V. Tsakiris, B. Marquardt, and H.J. Rack, JAI 2, 1 (2005).

    Article  Google Scholar 

  14. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, Acta Mater. 57, 2136 (2009).

    Article  Google Scholar 

  15. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, and S.L. Semiatin, Metall. Mater. Trans. A 34, 147 (2003).

    Article  Google Scholar 

  16. Z. Liu and G. Welsch, Metall. Trans. A 19, 527 (1988).

    Article  Google Scholar 

  17. Y. Chen, Z. Du, S. Xiao, L. Xu, and J. Tian, J. Alloys Compd. 586, 588 (2014).

    Article  Google Scholar 

  18. A. Dehghan-Manshadi and R.J. Dippenaar, Mater. Sci. Eng., A 528, 1833 (2011).

    Article  Google Scholar 

  19. M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Materials Park: ASM International, 2000).

    Google Scholar 

  20. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, and C.H. Ward, Mater. Sci. Eng., A 405, 296 (2005).

    Article  Google Scholar 

  21. R. Prakash Kolli, W.J. Joost, and S. Aankem, JOM 67, 1273 (2015).

    Article  Google Scholar 

  22. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning, JOM 67, 1281 (2015).

    Article  Google Scholar 

  23. H. Liu, M. Niinomi, M. Nakai, K. Cho, and H. Fujii, Scr. Mater. 130, 27 (2017).

    Article  Google Scholar 

  24. H. Liu, M. Niinomi, M. Nakai, X. Cong, K. Cho, C.J. Boehlert, and V. Khademi, Metall. Mater. Trans. A 48, 139 (2017).

    Article  Google Scholar 

  25. M. Hida, E. Sukedai, C. Henmi, K. Sakaue, and H. Terauchi, Acta Metall. 30, 1471 (1982).

    Article  Google Scholar 

  26. B.S. Hickman, J. Mater. Sci. 4, 554 (1969).

    Article  Google Scholar 

  27. A. Devaraj, S. Nag, R. Srinivasan, R. Williams, R. Banerjee, and H.L. Fraser, Acta Mater. 60, 596 (2012).

    Article  Google Scholar 

  28. F. Prima, J. Debuigne, M. Boliveau, and D. Ansel, J. Mater. Sci. Lett. 19, 2219 (2000).

    Article  Google Scholar 

  29. A. Gysler, G. Lutjering, and V. Gerold, Acta Metall. 22, 901 (1974).

    Article  Google Scholar 

  30. F. Sun, S. Nowak, T. Gloriant, P. Laheurte, A. Eberhardt, and F. Prima, Scr. Mater. 63, 1053 (2010).

    Article  Google Scholar 

  31. Y. Zheng, D. Banerjee, and H.L. Fraser, Scr. Mater. 116, 131 (2016).

    Article  Google Scholar 

  32. S. Dubinskiy, A. Korotitskiy, S. Prokoshkin, and V. Brailovski, Mater. Lett. 168, 155 (2016).

    Article  Google Scholar 

  33. T.S. Kuan, R.R. Ahrens, and S.L. Sass, Metall. Trans. A 6, 1767 (1975).

    Article  Google Scholar 

  34. S. Li, Y. Hao, R. Yang, Y. Cui, and M. Niinomi, Mater. Trans. 43, 2964 (2002).

    Article  Google Scholar 

  35. M. Ogawa, T. Shimizu, T. Noda, and M. Ikeda, Mater. Trans. 48, 390 (2007).

    Article  Google Scholar 

  36. V. Khademi, C.J. Boehlert, and M. Ikeda, in Proceedings of the Twenty-Fourth International Symposium on Processing and Fabrication of Advanced Materials (PFAM XXIV), ed. by M. Ikeda, T. Haruna, M. Niinomi, T.S. Srivatsan (Kansai University, Osaka, 2016), pp. I–X.

  37. H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp, Acta Mater. 61, 7555 (2013).

    Article  Google Scholar 

  38. A. Chakkedath, J. Bohlen, S. Yi, D. Letzig, Z. Chen, and C.J. Boehlert, Metall. Mater. Trans. A 45, 3254 (2014).

    Article  Google Scholar 

  39. H. Li, C.J. Boehlert, T.R. Bieler, and M.A. Crimp, Philos. Mag. 95, 691 (2015).

    Article  Google Scholar 

  40. H. Li, D.E. Mason, Y. Yang, T.R. Bieler, M.A. Crimp, and C.J. Boehlert, Philos. Mag. 93, 2875 (2013).

    Article  Google Scholar 

  41. G. Welsch, R. Boyer, and E.W. Collings, Materials Properties Handbook: Titanium Alloys (Materials Park: ASM International, 1993).

    Google Scholar 

  42. V. Khademi, M. Ikeda, and C.J. Boehlert, in Proceedings of the 13th World Conference on Titanium (Wiley-Blackwell, 2016), p. 1109.

  43. V. Khademi, in An Experimental–Computational Study on the Plastic Deformation Behavior of Body-Centered Cubic Titanium Alloys, PhD Dissertation, Michigan State University (2018).

  44. S.A. Mantri, D. Choudhuri, A. Behera, J.D. Cotton, N. Kumar, and R. Banerjee, Metall. Mater. Trans. A 46, 2803 (2015).

    Article  Google Scholar 

  45. C.J. Boehlert and V. Khademi, Michigan State University, Titanium Alloy and Method of Forming a Titanium Alloy, International Patent Application number PCT/US2018/014246, International Publication Number WO 2018/136641 A3, International Publication Date: July 26, 2018.

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Basic Energy Science through Grant No. DE-FG02-09ER46637. Some of the microscopy conducted at Oak Ridge National Laboratory’s (ORNL) Center for Nanophase Materials Sciences (CNMS), which is a U.S. Department of Energy, Office of Science User Facility. The authors are grateful to Professors Thomas Bieler, Philip Eisenlohr, and Martin Crimp of Michigan State University (MSU) for helpful discussions and Professor Andre Lee of MSU for assistance with the DMA analysis. The authors are also grateful to Dr. Karren More of ORNL and Dr. Huihong Liu of Osaka University for TEM assistance. The authors are also grateful to Mrs Dorothy Coffey of ORNL for TEM sample preparation assistance. The authors acknowledge that material was prepared by Daido Steel Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Boehlert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khademi, V., Ikeda, M., Hernández-Escobar, D. et al. The Elevated-Temperature Strength Enhancement of a Low-Cost β Titanium Alloy Through Thermomechanically-Induced Phase Transformation. JOM 71, 3621–3630 (2019). https://doi.org/10.1007/s11837-019-03598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03598-2

Navigation